
For the best experience, open this PDF portfolio in

Acrobat X or Adobe Reader X, or later.

Get Adobe Reader Now!

http://www.adobe.com/go/reader

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release. Distribution is unlimited.

A PARALLEL QUANTUM COMPUTER SIMULATOR

by

James E. Fischer

September 2016

Thesis Advisor: Ted Huffmire
Second Reader: James Luscombe

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704–0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188) Washington, DC 20503.
1. AGENCY USE ONLY
(Leave blank)

2. REPORT DATE
September 2016

3. REPORT TYPE AND DATES COVERED
Master’s thesis

4. TITLE AND SUBTITLE
A PARALLEL QUANTUM COMPUTER SIMULATOR

5. FUNDING NUMBERS

6. AUTHOR(S) James E. Fischer

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 The unique principles of quantum mechanics may one day enable computers to perform operations
that would be impossible on a classical computer. Although no one knows whether it will be possible to
build a large-scale, functional, and stable quantum computer, researchers can study quantum-mechanical
systems and develop algorithms and circuits by simulating quantum systems in software. Performance and
memory bottlenecks prevent most current quantum computer simulators from being able to simulate
quantum systems that are large enough to be useful. In this thesis, we develop a matrix-free sequential
quantum computer simulator to vastly improve both time and memory performance of sequential code on
a single processor. Next, we distribute the matrix-free algorithm over multiple parallel processors using the
Message Passing Interface in order to simulate quantum systems that are too large to reside wholly within
the memory of a single processor. Finally, we simulate various quantum circuits using the Hamming high-
performance computing cluster in order to conduct algorithmic analysis.

14. SUBJECT TERMS
quantum computing, quantum computer simulation, parallel computing

15. NUMBER OF
PAGES

129
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UU
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)
 Prescribed by ANSI Std. 239–18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release. Distribution is unlimited.

A PARALLEL QUANTUM COMPUTER SIMULATOR

James E. Fischer
Lieutenant, United States Navy

B.S., United States Naval Academy, 2008

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2016

Approved by: Ted Huffmire
Thesis Advisor

James Luscombe
Second Reader

Peter Denning
Chair, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The unique principles of quantum mechanics may one day enable computers to

perform operations that would be impossible on a classical computer. Although no one

knows whether it will be possible to build a large-scale, functional, and stable quantum

computer, researchers can study quantum-mechanical systems and develop algorithms

and circuits by simulating quantum systems in software. Performance and memory

bottlenecks prevent most current quantum computer simulators from being able to

simulate quantum systems that are large enough to be useful. In this thesis, we develop a

matrix-free sequential quantum computer simulator to vastly improve both time and

memory performance of sequential code on a single processor. Next, we distribute the

matrix-free algorithm over multiple parallel processors using the Message Passing

Interface in order to simulate quantum systems that are too large to reside wholly within

the memory of a single processor. Finally, we simulate various quantum circuits using the

Hamming high-performance computing cluster in order to conduct algorithmic analysis.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I.	 INTRODUCTION TO QUANTUM COMPUTING ... 1	
A.	 BACKGROUND AND QUANTUM COMPUTING

FUNDAMENTALS ... 1	
1. Overview and Significance ... 1
2. Superposition, Quantum Parallelism, and Bra-ket

Notation .. 2	
3. Multiple Qubit Systems and Entanglement 4

B.	 INTRODUCTION TO QUANTUM GATES, CIRCUITS, AND
ALGORITHMS ... 7	
1. Quantum Gates and Circuits ... 8
2. Quantum Algorithms .. 14

C.	 DISSIPATION, DECOHERENCE, AND QUANTUM ERROR
CORRECTION ... 24	
1. Classical Error Correction ... 26
2. Quantum Error Correction ... 28
3. Quantum Error Correction Codes .. 30

D.	 QUANTUM COMPUTER SIMULATION .. 36	
E.	 LIMITATIONS OF SEQUENTIAL QUANTUM COMPUTER

SIMULATORS .. 37	

II. INTRODUCTION TO PARALLEL COMPUTING 39
A.	 OVERVIEW OF PARALLELISM IN COMPUTING 39	

1. Bit Level Parallelism ... 40
2. Instruction Level Parallelism ... 40
3. Thread Level Parallelism across Multiple Processors 42

B.	 PARALLEL PROGRAMMING, THE MESSAGE PASSING
INTERFACE, AND THE JULIA LANGUAGE 43	
1. Parallel Programming with MPI ... 43
2. Julia Programming Language ... 45

C.	 PARALLEL ALGORITHM PERFORMANCE ANALYSIS:
AMDAHL’S LAW AND GUSTAFSON’S LAW 46	

D.	 APPLICATION TO QUANTUM COMPUTER SIMULATION 49	

III. DEVELOPMENT OF A PARALLEL QUANTUM COMPUTER
SIMULATOR .. 51	
A. OPTIMIZING A SEQUENTIAL QCS ... 51	

1. Quantum Description Language ... 51
2. Simulating Quantum Gates In-Place .. 53

 viii

3.	 Comparison of Full-Matrix and In-Place Algorithms 64	
B.	 GOALS OF PARALLELIZING A QCS .. 68	
C.	 IMPLEMENTING THE IN-PLACE ALGORITHM USING

MPI ... 69	

IV.	 PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE
PARALLEL QUANTUM COMPUTER SIMULATOR 75	
A.	 ASCERTAINMENT OF CORRECTNESS OF THE

PARALLEL QUANTUM COMPUTER SIMULATOR 75	
B.	 PERFORMANCE ANALYSIS OF THE PARALLEL

QUANTUM COMPUTER SIMULATOR ... 79	
C.	 COMMUNICATION COSTS IN THE PARALLEL QUANTUM

COMPUTER SIMULATOR .. 86	
D.	 OPTIMIZING THE PARALLEL QUANTUM COMPUTER

SIMULATOR .. 92	
1.	 Optimizations Included in our Simulator 92	
2.	 Potential Future Optimizations ... 93	

V.	 CONCLUSION AND FUTURE WORK .. 97	
A.	 CONCLUSION ... 97	
B.	 FUTURE WORK .. 98	

APPENDIX. SAMPLE QDL CIRCUITS. .. 99	

SUPPLEMENTAL .. 105	

LIST OF REFERENCES ... 107	

INITIAL DISTRIBUTION LIST .. 111	

 ix

LIST OF FIGURES

Figure 1	 Bloch Sphere. Adapted from [1]. .. 11	

Figure 2	 Graphical Description of Quantum Gates. Adapted from [1]. 14	

Figure 3	 Black Box Function Uf . Adapted from [1]. .. 16	

Figure 4	 Deutsch’s Algorithm Quantum Circuit. Adapted from [1]. 17	

Figure 5	 Quantum Circuit for the Deutsch-Jozsa Algorithm. Adapted from
[1]. ... 20	

Figure 6	 Quantum Circuit for Grover’s Search Algorithm. Adapted from [1]. 21	

Figure 7	 Shor’s Algorithm Circuit Diagram. Adapted from [1]. 23	

Figure 8	 Quantum Circuit for Bit-Flip Error Correction. Adapted from [2]. 32	

Figure 9	 Quantum Circuit for Phase Shift Error Correction. Adapted from [2]. 34	

Figure 10	 The Shor Code. Adapted from [2]. ... 35	

Figure 11	 Performance of Various Languages Relative to C across Several
Benchmarks. Adapted from [25]. .. 46	

Figure 12	 Master-Slave Paradigm Diagram. ... 70	

Figure 13	 Runtime Ratio Compared to Sequential QCS versus Number of MPI
Processes for Various 2∗ H ⊗N() Circuits .. 84	

Figure 14	 Runtime Ratio to Baseline versus Number of MPI Processes For
Various 2∗ H ⊗N() Circuits .. 85	

Figure 15	 Total Data Transmitted versus Number of MPI Processes for
Various 2∗ H ⊗N() Circuits .. 90	

Figure 16	 Total Data Transmitted versus Number of MPI Processes for
Various 2∗ H ⊗N() Circuits .. 91	

Figure 17	 Total MPI Communications and Complex Amplitudes Updated per
Step of the 2∗ H ⊗8() Circuit .. 95	

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1	 Computational Steps until Decohesion for Various Qubit
Implementations. Adapted from [2]. ... 25	

Table 2	 Classical Three-Bit Repetition Code .. 27	

Table 3	 Error Syndrome for Each Classical State in the Bit-Flip Code 33	

Table 4	 Possible Mask Values for H-Gates on a Three-Qubit Register 57	

Table 5	 Values after the Left-Shift Operation in the CNOT Gate for N=3. 62	

Table 6	 Naïve versus In-Place Simulation (1.4 GHz Intel Dual Core i5, 4 GB
Memory) ... 67	

Table 7	 Naïve versus In-Place Simulation Performance (AMD Opteron 6174
CPU) ... 67	

Table 8	 Naïve versus In-Place Simulation (Intel Xeon E-5 2698 CPU) 68	

Table 9	 Teleportation Circuit Final State Vectors ... 76	

Table 10	 Single-Qubit Gate Test Circuit State Vectors After Third Transform 77	

Table 11	 Single-Qubit Gate Test Circuit Final State Vectors 78	

Table 12	 QCS Time Performance Analysis ... 80	

Table 13	 2∗ H ⊗N() Circuit Sequential and Parallel Simulation Times 82	

Table 14	 Strong Scaling of the QCS on a 2∗ H ⊗10() Circuit 82	

Table 15	 Strong Scaling of the QCS on a 2∗ H ⊗12() Circuit 83	

Table 16	 Strong Scaling of the QCS on a 2∗ H ⊗14() Circuit 83	

Table 17	 Weak Scaling of the QCS ... 85	

Table 18	 Sequential QCS Memory Allocations ... 87	

Table 19	 Parallel QCS Communication Cost Analysis ... 88	

Table 20	 Communications Cost Strong Scaling on a 2∗ H ⊗10() Circuit 89	

 xii

Table 21	 Communications Cost Strong Scaling on a 2∗ H ⊗12() Circuit 89	

Table 22	 Communications Cost Strong Scaling on a 2∗ H ⊗14() Circuit 89	

Table 23	 Communications Cost Weak Scaling of the QCS 91	

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CNOT controlled not

CPU central processing unit

DLP data-level parallelism

DSM distributed shared memory

GCD greatest common denominator

HPC high performance computing

IC integrated circuit

I/O input/output

MPI message passing interface

QDL quantum description language

QFT quantum Fourier transform

TLP task-level parallelism

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor, Professor Ted Huffmire, for teaching

me the basics—and the not-so-basics—of quantum computing. Without his guidance,

technical knowledge, and patience, this thesis would not have been possible.

Second, I extend my fullest appreciation to Professor James Luscombe, my

second reader, for taking his time to ensure the thoroughness and correctness of the

details of quantum mechanics discussed in this thesis.

Next, I would like to thank Professor Jeremy Kozdon of the Mathematics

Department for teaching me the fundamentals of parallel computing, including the

Message Passing Interface. The technical side of this thesis would certainly not have been

realized without his assistance.

Finally, I would like to thank the entire faculty of the Computer Science

Department, whose tutelage instilled in me the critical thinking skills necessary to

conduct this research.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION TO QUANTUM COMPUTING

A. BACKGROUND AND QUANTUM COMPUTING FUNDAMENTALS

At their most basic level, quantum computers utilize known quantum-mechanical

principles in order to execute quantum algorithms on quantum bits. Although there are

currently only a few well-studied quantum algorithms, some of these quantum algorithms

are theoretically able to perform certain operations substantially faster than classical (i.e.,

non-quantum) algorithms [1], [2]. Despite the many technological advances in both

classical hardware and software over the last half-century, there are still many problems

that are believed to only be solvable in super-polynomial time using classical

computers—such as prime integer factorization, which is critical to virtually every

cryptosystem used around the globe [3]. Prime integer factorization can take even the

world’s most powerful supercomputer longer than the age of the known universe to

perform, but can theoretically be computed in hours or minutes using known quantum

algorithms [3]–[5]. Therefore, the implications of realizing a large-scale operational

quantum computer would be enormous not just in the fields of computer science or

physics, but to national security as a whole.

1. Overview and Significance

The field of quantum computing is still in its early infancy; as of early 2016, the

realization of a large-scale, stable quantum computer is far from being implemented due

to current technological restrictions. Despite these technical limitations, however,

computer scientists are able to use classical computers in order to simulate the behavior

of quantum computers using software. Programs known as quantum computer simulators

allow researchers in the fields of physics, mathematics, and computer science to study

and develop quantum algorithms in order to learn their benefits and limitations without

having to build an actual quantum computer.

Much like classical computers, quantum computers execute quantum algorithms

by manipulating bits using various logic gates. The main difference is that quantum

algorithms are executed upon quantum bits, or “qubits,” using various quantum logic

 2

gates, both of which differ greatly from their classical analogues. Much of the speedup

obtained by quantum algorithms over classical algorithms is a result of quantum

parallelism, which is made possible by harnessing a unique property of a qubit called

superposition [1], [2], [5]. Another unique aspect of some quantum systems is an

interdependence between two physically separated qubits, known as entanglement [1],

[6]. Both superposition and entanglement in quantum systems are cleverly exploited in

various quantum algorithms to enable operations that are not physically possible using

classical circuits, but can be studied through quantum computer simulation [1].

2. Superposition, Quantum Parallelism, and Bra-ket Notation

Unlike classical computers, which operate on bits whose values are restricted to

either zero or one at any particular time, a quantum computer operates on qubits which,

prior to measurement, can have a value that is probabilistically between zero and one

[1].1 The quantum-mechanical property of a qubit being able to be between two distinct

states at a particular point in time is known as superposition. Whereas a classical register

of N bits can only represent a single value at a particular time, a quantum register

consisting of N qubits can be in an arbitrary superposition of up to 2N states

simultaneously [4], [5]. This phenomenon is known as quantum parallelism and can be

harnessed to provide massive speedup to certain operations. The quantum state of an N-

qubit register represents the probability that the quantum register will be measured at a

particular value inclusively between 0 and 2N-1. Once the state of the quantum register is

measured, the system is said to collapse; the actual value to which the system collapses

depends on that state’s probability compared to the probability of measuring other

possible states, and thus quantum computers are said to be probabilistic [1], [2].

A quantum computer simulator represents the state of qubits in a quantum system

as a series of matrices. In the field of quantum mechanics, the bra-ket notation is the

1 The precise details and interpretation of quantum measurement is beyond the scope of this thesis.

The low-level physical implementations of qubits and quantum logic gates are abstracted away in the field
of quantum computing.

 3

standard notation for representing quantum states [1], [2]. In bra-ket notation, a column

vector A is represented as |A〉 (pronounced “ket A”), as shown in Equation (1).2

| A〉 =

A0
A1
!

An − 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= A0()⋅ | e0〉 + A1()⋅ | e1〉 +…+ An − 1()⋅ | en − 1〉 (1)

In Equation (1), |A〉 is the linear combination consisting of A0, A1, ..., An-1 ,which

represent scalar quantities, and |e0〉, |e1〉, …, |en-1〉, which are the n-dimensional

orthonormal basis vectors (i.e., orthogonal unit vectors) of the state |A〉, that is:

| e0〉 =

1
0
!
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, | e1〉 =

0
1
!
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

, ... | en − 1〉 =

0
0
!
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (2)

In practice, these basis vectors are often shorthanded to | e0〉 = | 0〉, | e1〉 = |1〉, …,

|en-1〉 = |n-1〉 [1], [2]. A single qubit x can be represented in ket notation by the column

vector shown in Equation (3).

 x = c0 c1[]T = c0⋅ | 0〉 + c1⋅ |1〉 (3)

Here, c0 and c1 are complex numbers, referred to as complex amplitudes (or

complex weights), which are normalized such that c0 2 + c1 2 = 1 . The value c0 2 equals

the probability of measuring qubit x in state |0〉, and the value c1 2 is the probability of

measuring x in state |1〉 [1], [2]. Note that after measurement, qubit x is said to collapse

2 The full bra-ket notation consists of two halves: the “bra” and the “ket. In the scalar action of a linear
function on a complex vector space denoted by 〈Φ | ψ〉, the “bra” refers to “〈Φ|,” while the “ket” refers to
“|ψ〉.” The whole “bra-ket” in this case would refer to the inner (dot) product of the row vector represented
by 〈Φ| and the column vector represented by |ψ〉 [1], [2]. In quantum mechanics, this translates to the
complex amplitude (i.e., probability) for state ψ to collapse to state Φ upon measurement [1], [2]. For the
purposes of quantum computing and quantum computer simulation, the ket notation is used frequently, but
the bra notation is rarely used [1], [2].

 4

out of superposition, and the qubit can only have a value of either zero or one at that

point. Thus, the sum of the squares of a qubit’s complex amplitudes must equal 1

according to the laws of probability [1].

3. Multiple Qubit Systems and Entanglement

Two qubits x and y, can both be represented by two separate column vectors, as

shown in Equation (4). Here, x0, x1, y0, and y1 are the complex amplitudes.

x = x0 x1[]T

y = y0 y1[]T
 (4)

These two separate qubits can be assembled into a quantum register consisting of

least-significant qubit, y, and most significant qubit, x. In ket notation, the four possible

states of this register can be written, as shown in Equation (5).

| x0〉 ⊗ | y0〉 → both qubits measured zero
| x0〉 ⊗ | y1〉 → x measured zero, y measured one
| x1〉 ⊗ | y0〉 → x measured one, y measured zero
| x1〉 ⊗ | y1〉 → both qubits measured one

 (5)

Here, the symbol⊗ represents the Kronecker product. The value of the entire

register, canonically represented by the state vector |ψ〉, is given by the full Kronecker

product of the two column vectors from Equation (4), as shown in ket notation in

Equation (6) [1].

 |ψ 〉 = x⊗ y = (x0 i y0)i | 0〉 + (x0 i y1)i |1〉 + (x1 i y0)i | 2〉 + (x1 i y1)i | 3〉 (6)

All Kronecker products of complex vector spaces are associative, and thus the

same process can be generalized for an N-qubit register with least significant qubit x0 and

most significant qubit xN-1 as |ψ 〉 = | x0〉 ⊗ | x1〉⊗… | xN − 1〉 [1], [2]. The expanded state

vector representing such an N-qubit register is shown in Equation (7), where l = 2N.

 5

 |ψ 〉 = c0i | 0〉 + c1i |1〉 + …+ cl − 1i | l −1〉 (7)

In Equation (7), each element |k〉 represents one possible value of the quantum

register. The register in state |ψ〉 is said to be in a probabilistic superposition of all of its

constituent basis states |0〉, …, |l-1〉. The values of the complex amplitudes ck indicate

which particular variety of superposition |ψ〉 is currently in [1].

The exact probability, P(k), that a quantum system in state |ψ〉 will end up in state

|k〉 after being measured is equal to the square of the Euclidean norm (i.e., the 2-norm) of

the complex amplitude of state |k〉 divided by the square of the Euclidean norm of the

entire system, as shown in Equation (8). Note that regardless of the complex amplitudes

in the state, P(k) such that 0 ≤ P(k) ≤ 1 [1], [2], [6].

 P(k) = ck 2

cj 2
j=0

l−1

∑
=

ck 2

|ψ 〉 2 (8)

According to the laws of probability, since an arbitrary system must of course be

located in one of its own basis states, the probabilities of the system being measured in

each basis state must sum up to 1. That is, the sum of the squares of all complex

amplitudes in a quantum system must always equal 1. For the system represented in

Equation (7), this means that co
2 + c1 2 +…+ cl − 1 2 = 1 .

As a numerical example, consider a 2-qubit register’s probability of being

measured in position |2〉; this is equivalent to the most significant qubit being measured in

state |1〉 and the least significant qubit being measured in state |0〉. The state vector for

representing the register is shown in Equation (9), and the probability calculation is

shown in Equation (10) [1].

 ∈!

 6

 |ψ 〉 = 1
2

⎛
⎝⎜

⎞
⎠⎟
⋅

i
0
i
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

→| 0〉
→|1〉
→| 2〉
→| 3〉

 (9)

 P(2) =

i
2

2

i
2

2

+ 0 + i
2

2

+ 0
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2 =
2

2 + 0 + 2 + 0()2
= 2
4
= 0.5 (10)

The Kronecker product representation of a quantum register from Equation (7),

combined with the probabilistic nature of any quantum system, can be used to

mathematically illustrate the curious effects of the interdependency of a multiple qubit

system, known as quantum entanglement. Consider the two qubit system consisting of x

and y shown in Equation (6), where x0 ⋅ y0() = x1 ⋅ y1() = 1 and x0 ⋅ y1() = x1 ⋅ y0() = 0 . A

simple evaluation of the Euclidean norms reveals that P(x0) = P(x1) = P(y0) = P(y1) =

0.5. In other words, prior to measurement, both particles have precisely a 50% chance of

being measured at either of their two possible states [1], [2], [6].

Suppose now that particle x is measured in position |0〉, meaning that now the

probability P(0) = 1. Because the complex amplitude of the term is zero, the

probability that qubit y is measured in a state of |1〉 must now also be zero. Therefore, it

must be the case that qubit y is in position |0〉. Similarly, if qubit x were measured in

position |1〉, then qubit y must be in position |1〉.

In the system described above, qubits x and y are said to be entangled. The

phenomenon of entanglement is referred to as “symmetrical,” meaning that the case

would be identical if qubit y were measured first. Interestingly, the physical distance

between these two qubits is irrelevant. If the two qubits are implemented as electrons

where the state is determined by the electron’s spin, the particles could be light years

away from each other and a measurement of one particle’s spin would instantaneously

influence the state of the second particle [1], [2].

0⋅ |x 0 〉 ⊗ |y1〉

 7

Not all multiple-qubit quantum systems are entangled, however. Consider another

possible superposition of the quantum state of a register of qubits x and y, where

x0 ⋅ y0() = x0 ⋅ y1() = x1 ⋅ y0() = x1 ⋅ y1() = 1, as shown in Equation (11).

 |ψ 〉 = 1⋅ | x 0〉⊗ | y0〉 + 1⋅ | x 0〉⊗ | y1〉 + 1⋅ | x1〉⊗ | y0〉 + 1⋅ | x1〉⊗ | y1〉 (11)

An arithmetic analysis of the probability of each basis state in this quantum

system reveals that a measurement of either particle reveals nothing whatsoever about the

position of the other particle [1]. Such a quantum system is known as separable, as

opposed to entangled [1]. Separable quantum systems are also important to quantum

computing because they allow for circuits in which certain qubits are unaffected by the

measurement of other qubits [1], [2], [6].

B. INTRODUCTION TO QUANTUM GATES, CIRCUITS, AND
ALGORITHMS

At the lowest level, the principles behind implementing quantum computers are

similar to those of classical computers in that they both operate by manipulating bits

using logic gates. All operations executed by a classical computer are the result of bits

being manipulated by a series of elementary logic gates (e.g., AND, OR, and NOT gates).

Each one of these logic gates is made up of transistors, and many thousands of logic gates

are wired together into byzantine circuits forming arithmetic logic units, registers, control

units, and other elements that comprise modern Computer Processing Units (CPUs). As

of 2016, there are commercially available CPUs with over 5 billion transistors on them,

indicating the scope of the complexity of these circuits [7]. Regardless of complexity,

however, any classical circuit can be created using only NAND gates or NOR gates. These

two gates are therefore commonly referred to as “universal logic gates,” since any

possible Boolean function can be derived from combinations of these two gates [6].

Similarly, a quantum computer performs operations on qubits using a series of

quantum logic gates. Quantum logic gates differ from their classical counterparts in many

ways, but one of the most fundamental differences is the concept of reversibility. Due to

 8

Landauer’s principle and the second law of thermodynamics,3 all quantum operations,

other than measurement, performed on a qubit must be completely reversible [1].

Measurement, on the other hand is necessarily always irreversible [2]. In the context of

logic gates, reversibility means that after an operation has been performed on a qubit, the

exact input can be recovered from any output. It is clearly impossible to recover the

original input of classical gates other than the NOT gate since other classical logic gates

(such as the AND, OR, and XOR gate) all have two input bits and a single output bit. It is

not possible to reverse these classical Boolean operations, and as a result, these

irreversible gates are not permitted at the quantum level [1], [2].

1. Quantum Gates and Circuits

Just as any classical circuit can be built only using universal NAND or NOR gates,

there exist sets of universal quantum logic gates from which any possible quantum circuit

can be derived. It has been proven mathematically that any operation on a quantum state

can be rewritten as a series of two elementary types of quantum logic gate: single qubit

gates and Controlled Not (CNOT) gates [8].

Quantum logic gates are described mathematically using matrix multiplication upon

the column vector |ψ〉 that represents the state of the quantum system. The state vector |ψ〉 is

multiplied by a transformation matrix, resulting in a new state |ψ〉′. Since all operations

performed on a quantum system must be reversible, this matrix multiplication must also be

reversible, meaning that the transformation matrix must be unitary [1], [2], [6].

(1) The Hadamard Gate

One of the most commonly used gates in quantum computing is the Hadamard gate,

abbreviated as H-gate, which is used to put a single qubit into superposition. The H-gate is

applied to a single qubit and is represented mathematically by multiplying the qubit’s state

vector by the unitary 2 x 2 Hadamard matrix shown in Equation (12), from [1].

3 A full discussion of Landauer’s principle and/or thermodynamics is outside the scope of this thesis.

 9

 H = 1
2

1 1
1 −1

⎡

⎣
⎢

⎤

⎦
⎥ (12)

Equation (13) depicts the application of the Hadamard transform to the state

vector of a qubit as described in Equation (3). Applying the H-gate to a qubit results in

mapping the basis state of |0〉 to | 0〉 + |1〉() / 2 and the basis state of |1〉 to

| 0〉 − |1〉() / 2 , as shown in Equation (13) [8].

|ψ 〉 ' = H ⋅ |ψ 〉 = H ⋅ c0 | 0〉 + c1 |1〉()

= 1
2

c0 + c1() | 0〉 + c0 − c1() |1〉⎡⎣ ⎤⎦
 (13)

Applying Equation (8) to the resultant state |ψ〉′ from Equation (13) reveals that

applying a Hadamard gate to a qubit results in that qubit having exactly a 50% chance of

being measured in either state |0〉 or |1〉, regardless of its initial state. Furthermore, applying

the Hadamard gate twice in sequence to the same qubit will always result in the qubit

reverting to its initial value. The Hadamard gate is very important in quantum computing

because it allows quantum algorithms to take advantage of the property

of superposition and thus harness quantum parallelism. Since quantum parallelism

enables many of the unique computations that are possible in a quantum computer but

not a classical computer, the Hadamard gate is utilized in nearly every quantum algorithm

[1], [2], [6].

(2) The Pauli and Phase Shift Gates

In addition to the Hadamard gate, there are four more commonly used single-

qubit gates: the Pauli-X, -Y, and -Z gates, as well as the phase shift gate. Each of these

gates can be represented mathematically as a rotation of a qubit’s state vector within the

Bloch sphere, which is a three-dimensional geometric representation of the state of a

qubit. In the Bloch sphere, the “north pole” and “south pole” are arbitrarily chosen to

represent a qubit’s basis states |0〉 and |1〉. All other possible values of the state vector |ψ〉

 10

depicted in the Bloch sphere distinctly represent the infinite different possible

superpositions of the qubit [1], [2], [6].

Figure 1 displays the Bloch sphere of a single qubit in an arbitrary superposition

represented by the state vector |ψ〉. The angle θ depicted in Figure 1 represents the offset

of |ψ〉 with respect to the z- axis, while φ represents the offset with respect to the x- axis.

In ket notation, the entire state space of |ψ〉 can be represented by Equation (14), where

0 ≤θ ≤ π and 0 ≤ϕ ≤ 2π [1], [2], [6].

|ψ 〉 = cos θ()⋅ | 0〉 + eiϕ sin θ()⋅ |1〉

= cos θ()⋅ | 0〉 + cos ϕ() + i ⋅sin ϕ()() ⋅sin θ()⋅ |1〉
 (14)

The Pauli-X, -Y, and -Z gates (abbreviated as X-, Y-, and Z- gates, respectively) as

well as the phase shift gate can be easily interpreted using the Bloch sphere

representation. The Pauli-X gate rotates the state vector representing a single qubit

around the x- axis by π radians. Similarly, the Pauli-Y and -Z gates represent rotations

around the y- and z- axes by π radians, respectively. The X-gate maps a qubit in state |0〉

to a state of |1〉, and vice versa; this is equivalent to a classical NOT gate. The Y-gate has

no classical equivalent, as it maps a qubit in a state of |0〉 to a state of i⋅|1〉 and a qubit in

state |1〉 to -i ⋅|0〉. Finally, the Z-gate does not change a qubit in basis state |0〉, but it maps

a state of |1〉 to - |1〉 [1], [2], [6].

 11

Figure 1 Bloch Sphere. Adapted from [1].

The Z gate is in fact a special case of a broader category of gates, known as the

phase-shift gates. All phase shift gates leave the basis state of |0〉 unchanged but map a

basis state of |1〉 to a state of eiφ⋅|0〉. The phase-shift gate, abbreviated R(φ), does not

affect the probability of measuring a qubit in either basis state |0〉 or |1〉, but rather shifts

the state vector’s “latitude” on the Bloch sphere by φ radians. In the case of the Z-gate,

the latitude shift is of φ = π radians, since eiπ = -1. The unitary transformation matrices

for the X, Y, Z, and R(φ) gates are shown in Equation (15), and their ket notation action

upon a qubit in state |ψ〉 is shown in Equation (16) [1], [2], [6].

|ψ 〉

| 0〉

|1〉

θ

ϕ

Y

Z

X

 12

X = 0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥

Y = 0 −i
i 0

⎡

⎣
⎢

⎤

⎦
⎥

Z = 1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥

R(φ) = 1 0
0 eiφ

⎡

⎣
⎢

⎤

⎦
⎥

 (15)

X⋅ |ψ 〉 = 1
2
c0 + i ⋅c1()⋅ | 0〉 + 1

2
c1+ i ⋅c0()⋅ |1〉

Y ⋅ |ψ 〉 = 1
2
c0 + c1()⋅ | 0〉 + 1

2
c1+ c0()⋅ |1〉

Z⋅ |ψ 〉 = c0 | 0〉 − c1 |1〉
R(ϕ)⋅ |ψ 〉 = c0 | 0〉 + c1eiϕ ⋅ |1〉

 (16)

(3) The CNOT and Toffoli Gates

The controlled-NOT gate operates on two qubits and forms a complete set of

universal quantum gates together with the aforementioned single-qubit gates. The CNOT

gate operates on a two qubit register consisting of a control qubit and target qubit; the

target qubit is flipped if and only if the control qubit is in state |1〉. A two qubit register

with the control qubit as qubit zero (i.e., the most significant bit) and the target qubit as

qubit one is represented by the notation CNOT1,0, and the associated transformation

matrix is shown in Equation (17) [1].

 CNOT 1, 0 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (17)

The Toffoli gate, also known as a controlled-CNOT or CCNOT gate, is very

similar to a CNOT gate, except that it operates on three qubits instead of two. The Toffoli

 13

gate has two control bits, and flips the target qubit if and only if the two control bits are

both in state |1〉. Equation (18) depicts the transformation of a Toffoli gate where qubits

zero and one are the control qubits and qubit two is the target qubit, denoted as T2,1,0 [1].

 T 2,1, 0 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (18)

CNOT and Toffoli gates are both reversible (since their matrix representations are

unitary), and are utilized in many quantum algorithms because they enable the

entanglement and disentanglement of quantum systems. Ket notation operations of the

CNOT10 gate and the T2,1,0 gate on a qubit in state |ψ〉 are shown in Equation (19).

CNOT 10⋅ |ψ 〉 = c0 | 0〉 + c3 |1〉 + c2 | 2〉 + c1 | 3〉
T 210⋅ |ψ 〉 = c0 | 0〉 + c1 |1〉 + c2 | 2〉 + c7 | 3〉 + c4 | 4〉 + c5 | 5〉 + c6 | 6〉 + c3 | 7〉

 (19)

(4) From Quantum Gates to Quantum Circuits

The set of quantum gates described above, being universal gates, necessarily

serve as the building blocks for any possible quantum circuit. Quantum circuits are, by

convention, depicted graphically as a series of operations performed sequentially on each

qubit [6]. Every qubit in a quantum register is depicted by a horizontal line separated at

regular intervals. Each interval represents one “step” or operation performed in the

quantum circuit. For modeling purposes, qubits are all depicted as travelling through the

quantum circuit from left to right, one interval at a time, and all at the same rate. The

symbols representing the previously described quantum gates are depicted in Figure 2.

From left to right, top to bottom, they are Hadamard, Pauli-X, -Y, and -Z, phase-change,

controlled NOT, and Toffoli gates. The bottom-right symbol indicates the measurement

 14

of a qubit. In the CNOT and Toffoli gates, the closed circles represent the control bit and

the open circle represents the target bit.

Figure 2 Graphical Description of Quantum Gates. Adapted from [1].

2. Quantum Algorithms

A quantum logic gate can be applied to the kth qubit in an N-qubit register by

multiplying the state vector |ψ〉 by a series of Kronecker products of N 2x2 identity

matrices (I), where the kth identity matrix is replaced by the desired gate to be applied.

For example, an H-gate can be applied to the middle qubit of a 3-qubit system by

multiplying the state vector |ψ〉 by I ⊗H ⊗ I . Multiple gates can be applied in one

operation using this method; Equation (20) depicts the operation required to apply H-

gates to all qubits of an N-qubit register with initial state vector |ψ〉. For simplicity, the

series of Kronecker products of H-gates from Equation (20) is abbreviated as H ⊗N [1].

 |ψ ′〉 = |ψ 〉 i H (0)⊗H (1)⊗…⊗H (N − 2)⊗H (N − 1)[] = |ψ 〉 iH ⊗N (20)

In this manner, the quantum gates and circuits described in the previous section

are wired together in order to execute quantum algorithms on quantum registers. All

quantum algorithms begin with their qubits in an arbitrary classical state (i.e., not in a

superposition) [1]. The qubits are then placed into superposition and unitary (reversible)

matrix operations are performed on the new quantum state. Finally, certain qubits are

H X Y Z

R(φ)

 15

measured, revealing the desired information [1], [2]. This section discusses some well-

known quantum algorithms.

(1) Deutsch’s Algorithm

Physicist David Deutsch described what is widely considered to be the first

quantum algorithm, commonly referred to as Deutsch’s algorithm [1], [9]. The algorithm

itself is not particularly useful in terms of the computation it performs. Rather, it serves

as a proof-of concept for exploiting the superposition principle to enable quantum

parallelism and achieve speedup over classical algorithms [9].

Deutsch’s algorithm examines a binary function f which maps a domain of {0,1}

onto a range of {0,1}. The function f is said to be constant if f(0) = f(1) and balanced if

f(0) ≠ f(1). Note that with a binary domain and range, both f(0) and f(1) must map to

either 0 or 1 for a total of 4 possible functions f(x). In order to determine if a particular

unknown function is balanced or constant, a classical computer is required to evaluate

f(x) on both possible binary inputs and compare each output. A quantum computer,

however, is able to determine whether f is balanced or constant after only a single

evaluation of f(x) using quantum parallelism [1], [6], [9].

Consider the balanced function f(x) that maps a 0 to 1 and a 1 to 0. This is

equivalent to multiplying the 2x2 matrix M in Equation (21) on the right by the initial

state, clearly,M ⋅ | 0〉 = |1〉 andM ⋅ |1〉 = | 0〉 [1].

 M = 0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥ (21)

 In order to evaluate a function f, Deutsch’s algorithm makes use of a reversible

“black-box” function Uf, as shown in Figure 3. The black-box takes two qubits as inputs;

in Figure 3, the top input |x〉 is the qubit that is being evaluated (as either balanced or

constant) and the bottom input |y〉 is used to control the output. The top output, |x´〉, is

equivalent to the top input, |x〉. The bottom output |y´〉, however, will be the value

| y⊕ f (x)〉 , where ⊕ indicates the exclusive-or (XOR) operation, which is equivalent to

binary addition modulo two [1], [9].

 16

Figure 3 Black Box Function Uf . Adapted from [1].

Using the function described in Equation (21), the black-box is given by the 4x4

unitary matrix Uf shown in Equation (22). Here, the index above the column indicates

the input values of |x, y〉, and the index to the right of each column corresponds to the

output |x´,y´〉 [1].

00 01 10 11

Uf =

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

00
01
10
11

 (22)

Deutsch’s algorithm uses this black-box function Uf in conjunction with H-gates

in order to determine if f(x) is balanced or constant using only one evaluation. Figure 4

shows an example circuit for Deutsch’s algorithm where the top qubit is initially in state

|0〉 and the bottom qubit is initially in state |1〉. Thus, the initial value of the quantum

register is |ϕ 0〉 = 0 1 0 0⎡⎣ ⎤⎦
T

 [1].

| x〉

| y〉

Uf

| ′x 〉 = | x〉

| ′y 〉 = | y⊕ f (x)〉

 17

Figure 4 Deutsch’s Algorithm Quantum Circuit. Adapted from [1].

After placing both qubits into superposition using H-gates, the value of the

quantum register at |φ1〉 is given by Equation (23) [1].

 |ϕ1〉 = H ⊗H() ⋅ |ϕ 0〉 = | 0〉+ |1〉
2

⎡
⎣⎢

⎤
⎦⎥
| 0〉− |1〉

2
⎡
⎣⎢

⎤
⎦⎥
= 1

2
⎛
⎝⎜

⎞
⎠⎟ − 1

2
⎛
⎝⎜

⎞
⎠⎟

1
2

⎛
⎝⎜

⎞
⎠⎟ − 1

2
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (23)

With both quantum bits in superposition, the black-box function Uf is applied to

the system. This is done by multiplying the matrix representing the black-box function by

|φ1〉. The black-box has no effect on the top qubit, but the bottom qubit in this example

becomes |1⊕ f (x)〉 [1], [9]. However, since at this point it is not known whether the

function is balanced or constant, the value of f(x) cannot be determined. Thus, the two

possible values for f(x) are left in the expression representing the quantum state |φ2〉, as

shown in Equation (24)[1].

 |ϕ 2〉 =Uf ⋅ |ϕ1〉 = | 0〉+ |1〉
2

⎡
⎣⎢

⎤
⎦⎥
| 0⊕ f (x)〉− |1⊕ f (x)〉

2
⎡
⎣⎢

⎤
⎦⎥

 (24)

Equation (24) shows the result of applying the black-box function to both qubits,

which only affects the value of the bottom qubit. Note that (-1)f(0) and (-1)f(1) must have

the same sign if f(x) is constant, while (-1)f(0) and (-1)f(1) must have different signs if f(x)

is balanced. Therefore, the (-1)f(x) term can be extracted from Equation (24) and

distributed through the first term as in Equation (25) [1].

| 0〉

|1〉

|ϕ 0〉

H

Uf

H H

|ϕ1〉 |ϕ 2〉 |ϕ 3〉

 18

|ϕ 2〉 = −1() f (x) | 0〉 + |1〉
2

⎡
⎣⎢

⎤
⎦⎥
| 0〉 − |1〉

2
⎡
⎣⎢

⎤
⎦⎥
=

−1() f (0) ⋅ | 0〉 + −1() f (1) ⋅ |1〉
2

⎡

⎣
⎢

⎤

⎦
⎥
| 0〉 − |1〉

2
⎡
⎣⎢

⎤
⎦⎥

 (25)

In the aforementioned example where f(0) = 1 and f(1) = 0, the state |φ2〉 becomes

−1 2() ⋅ | 0〉− |1〉[]⋅ | 0〉− |1〉[] . In general, the state of the quantum system at |φ2〉 is

shown for the four possible values of the function f are given in Equation (26) [1]. The

sign on the leading (±1) term is indicates which way the function is constant or balanced

(e.g., constantly 0 as opposed to constantly 1).

 |ϕ 2〉 =
±1() ⋅ | 0〉 + |1〉

2
⎡
⎣⎢

⎤
⎦⎥
⋅ | 0〉 − |1〉

2
⎡
⎣⎢

⎤
⎦⎥
, if f(x) is constant

±1() ⋅ | 0〉 − |1〉
2

⎡
⎣⎢

⎤
⎦⎥
⋅ | 0〉 − |1〉

2
⎡
⎣⎢

⎤
⎦⎥
, if f(x) is balanced

⎧

⎨
⎪
⎪

⎩

⎪
⎪

 (26)

The fourth state, |φ3〉 is obtained from |φ2〉 by applying an H-gate to the upper

qubit, which is equivalent to multiplying the entire state vector by H ⊗ I . From Equation

(13), an H-gate simply maps 1 2() | 0〉 + |1〉[] to |0〉 and 1 2() | 0〉 − |1〉[] to |1〉, and

therefore the final state |φ3〉 is given in Equation (27), from [1].

 |ϕ 3〉 =
±1() | 0〉 ⋅ | 0〉 − |1〉

2
⎡
⎣⎢

⎤
⎦⎥
, if f(x) is constant

±1() |1〉 ⋅ | 0〉 − |1〉
2

⎡
⎣⎢

⎤
⎦⎥
, if f(x) is balanced

⎧

⎨
⎪
⎪

⎩

⎪
⎪

 (27)

In the balanced example from above where f(0) = 1 and f(1) = 0, the final state is

given by |ϕ3〉 = −1 2()⋅ | 0〉 | 0〉 − |1〉[] . The final step in Deutsch’s algorithm is to

measure the top qubit; the function is constant if it is in state |0〉 and the function is

balanced if it is in state |1〉. This is all performed in a single operation on a quantum

computer, as opposed to two operations on a classical computer. While the problem that

Deutsch’s algorithm solves is contrived, it serves to demonstrate that a quantum

 19

computer can produce a solution with one operation as opposed to the two operations

required by a classical computer [1], [6], [9].

(2) The Deutsch-Jozsa Algorithm

David Deutsch collaborated with Richard Jozsa to develop the Deutsch-Jozsa

algorithm, which is a generalized variation of Deutsch’s algorithm [1], [10]. The

Deutsch-Jozsa algorithm utilizes the same principles as Deutsch’s algorithm in order to

determine if a function f is constant or balanced, except the domain of the function is a

register consisting of N qubits as opposed to merely a single qubit [1]. The function, now

written as f: {0,1}N à{0,1}, is said to be balanced if exactly half of the inputs produce

an output of 0 (the other half producing an output of 1). The function is said to be

constant if all inputs go to 0 or all inputs go to 1. Furthermore, f is guaranteed to be either

balanced or constant (no other possible functions are allowed in the context of the

Deutsch-Jozsa algorithm). In order to determine if f is constant or balanced, a classical

computer requires 2N-1+1 operations, as the computer must calculate f(x) for at least half

of the possible inputs. In contrast, a quantum computer executing the Deutsch-Jozsa

algorithm can determine if f is balanced or constant in a single operation, which provides

significant speedup for large values of N [1], [10].

The algorithm begins with the N qubits being evaluated in a state of |0〉, and a

control bottom qubit in a state of |1〉, as depicted at |φ0〉 in Figure 5 [1]. Both the top N

qubits and the bottom control qubit are then placed into superposition using H-gates to

obtain |φ1〉 [10]. All qubits are then fed through a black-box function (identical to the one

from Figure 3 but with the top qubit replaced by N qubits) to reach state |φ2〉. Again, the

result of this black box is that the top N qubits are unchanged, and the bottom control

qubit takes on the value | y⊕ f (x)〉 [1]. After the black-box function, H-gates are applied

to all of the top N qubits to arrive at |φ3〉. Finally, the top N qubits are measured [1], [10].

As indicated in the circuit diagram, the operations performed in the Deutsch-Jozsa

algorithm are identical to those in Deutsch’s algorithm except the top qubit from Figure 4

has been replaced by a register of N qubits, which is indicated whenever “⊗N “ appears

in superscript [1].

 20

Figure 5 Quantum Circuit for the Deutsch-Jozsa Algorithm.
Adapted from [1].

The entire matrix multiplication operation performed by the algorithm prior to

measurement can be written as |ψ ′〉 = H ⊗N ⊗ I() ⋅Uf ⋅ H ⊗N ⊗H()⋅ | 0⊗N ,1〉 [1]. The

precise details of the matrix operations to arrive at each step |φ0〉, …, |φ3〉, however, are

significantly more complex than those in Deutsch’s algorithm due to the N qubits in the

top register. As a result, a full analysis of each step is outside the scope of this thesis but

can be found at [10]. Nevertheless, at this point, a single measurement of the top N qubits

will reveal whether the function is balanced or constant [1], [10].

If f(x) is constant with an output of 1, the top qubits will be −1()⋅ | 0⊗N 〉 upon

measurement [1]. If f(x) is constantly 0, however, the top qubits will be measured in state

+1()⋅ | 0⊗N 〉 [1]. The top qubits will be measured at 0⋅ | 0⊗N 〉 if the function f is

balanced. The Deutsch-Jozsa algorithm, like Deutsch’s original algorithm, only solves a

contrived problem that is not especially useful. Nonetheless, a quantum computer

executing the Deutsch-Jozsa algorithm arrives at a solution after 1 operation, which is an

exponential speedup over the 2N-1+1 operations required by a classical computer [1], [10].

(3) Grover’s Search Algorithm

In 1996, Bell Labs computer scientist Lov Grover developed an algorithm that

searches an unordered array of N elements in N queries. The fewest number of queries

required on average to search such an array with a classical algorithm is N/2 queries [1],

[11]. Grover’s algorithm does not provide the exponential speedup of the Deutsch-Jozsa

| 0〉

|1〉

H

 H⊗N

Uf

N
 H⊗N

|ϕ 0〉 |ϕ1〉 |ϕ 2〉 |ϕ 3〉

 21

algorithm, however the quadratic speedup from linear time to O(N) is still significant

improvement. Additionally, the problem of searching an unordered list is extremely

useful in the field of computer science, as opposed to determining whether a function is

balanced or constant. A diagram for the quantum circuit of Grover’s algorithm is depicted

in Figure 6.

Figure 6 Quantum Circuit for Grover’s Search Algorithm. Adapted from [1].

 In order to search an unordered list in sub-linear time, Grover’s algorithm makes

use of two unique mathematical processes known as phase inversion and inversion about

the mean. Phase inversion involves changing the phase (i.e., rotation within the Bloch

sphere) of the quantum state without affecting the probability of measuring any of the

basis states [1], [11]. Changing a basis state’s phase without changing the probability of

measuring a particular value can be done by multiplying a state by i, -1, or both, as these

operations do not affect any Euclidean norms of a quantum system. The individual

elements of column vector v of length 2N can be inverted about the mean of v by the

operation shown in Equation(28) [1], [11].

 ′v = −I + 2A()v (28)

 Here I is a 2Nx2N identity matrix, A is a 2Nx2N matrix where each element’s value

is 2-N and v´ is the column vector v with each element inverted about the mean of v.

| 0〉

|1〉

 H⊗N

Uf

N
 −I + 2A

|ϕ 0〉 |ϕ1〉 |ϕ 3a〉 |ϕ 3b〉

H

Repeated 2N times

Phase	Inversion Inversion	about	
mean

 22

Mathematical proof of each step of Grover’s algorithm is beyond the scope of this thesis,

but a full treatment of the algorithm can be found at [11].

(4) Shor’s Factoring Algorithm

The best-known example of a quantum algorithm is Shor’s factoring algorithm,

which produces the prime factors of an integer in polynomial time—considerably faster

than any known classical factorization algorithm [1], [3]. Currently, the most widely used

public-key cryptography scheme is RSA, which is based on the assumption that it is

difficult to factor large prime integers on a classical computer. More specifically,

although no proof exists that there is not a faster classical prime integer factorizing

algorithm, no known classical algorithm is able factor prime numbers more efficiently

than the general number field sieve. The general number field sieve is estimated to run in

O(ec⋅(log(n))
1/3⋅(log(log(n))2/3)) for some constant c, where n is the number of bits to be factored;

this could take longer than the age of the known universe to solve for sufficiently large n

[1], [3], [6]. A quantum computer executing Shor’s algorithm, however, is theoretically

capable of factoring integers in polynomial time. Shor’s algorithm consists of both a

quantum algorithm and classical post-processing. The quantum portion of the algorithm

runs in O((log(n))2 ⋅(log(log(n)) ⋅(log(log(log(n)))) , and the classical post-processing runs

in O(log(n)) [1], [3]. Therefore, if a stable, scalable quantum computer capable of

executing Shor’s algorithm were ever to be built, it would potentially be capable of

breaking public-key cryptography schemes such as RSA in several hours or even

minutes. As a result, this algorithm is perhaps the main driving force behind the push for

the development of quantum computing, and has also resulted in a field of research

known as post-quantum cryptography [1], [3].

Like Grover’s search algorithm, the detailed mathematics behind Shor’s algorithm

is outside the scope of this thesis, and a full analysis of the algorithm can be found at [3].

At a high level, the algorithm executes the following steps to determine a factor, p (if p

exists), of a positive integer N, where n = log2(N):

 23

1.) Classically determine if N is a power of a prime using a polynomial

algorithm. If N is a power of a prime (or prime itself), then a factor has been found and

no further work need be done [1].

2.) Classically choose a random positive integer a (where 1 < a < N) and

determine the greatest common denominator (GCD) of a and N. This can be done in

linear time using Euclid’s algorithm. If the GCD is not equal to 1, this is the desired

factor and the algorithm can stop here [1].

3.) Use the quantum circuit depicted in Figure 7 to determine the period r of the

function given by f(x) = axmod(N). This is enabled by quantum parallelism [1].

4.) If r is odd, or if ar = -mod(N), repeat to Step 2 with a different integer a [1].

5.) Classically determine the GCD of N with both (ar/2+1) and (ar/2+1), using

Euclid’s algorithm. The factor p is at least one of the nontrivial solutions [1].

Figure 7 Shor’s Algorithm Circuit Diagram. Adapted from [1].

Shor’s algorithm also makes use of an operation known as the Quantum Fourier

Transform (QFT), which is the quantum analogue of the discrete Fourier transform [1],

[12]. In the Shor circuit depicted in Figure 7, the Hermitian adjoint of the QFT (indicated

by the superscripted †) is used to determine the period of the function f(x) = axmod(N).

The precise details of the QFT are also outside the scope of this thesis, but more

information can be found about it at [12].

| 0〉

| 0〉

 H⊗M

m
QFT†

|ϕ 0〉 |ϕ1〉 |ϕ 2〉 |ϕ 3〉

n
U fa ,N

|ϕ 4〉

 24

Several groups have implemented small-scale working quantum computers that

correctly execute Shor’s algorithm. One group at IBM created a working Shor circuit on

a quantum computer that factors 15 into 3x5 in 2001 [13]. In 2012, another group at the

University of Bristol was able to develop a quantum computer capable of factorizing 21

using Shor’s algorithm [14]. While these physical implementations of Shor’s algorithm

serve as a proof-of-concept for quantum computing, they are far from being able to crack

RSA encryption schemes. One of the main challenges with Shor’s algorithm is that a

different circuit is required for factoring different integers, and there is no cookbook

method for developing these so called “compiled circuits.” In order to break a 2048-bit

RSA key, it is estimated that a quantum computer with 4,000 qubits and over 100 million

gates would be required [4]. There are many reasons preventing the implementation of a

quantum computer of this size, but perhaps none is more important than the issue of

quantum error correction.

C. DISSIPATION, DECOHERENCE, AND QUANTUM ERROR
CORRECTION

The largest hurdle to the realization of a scalable quantum computer is a result of

qubit errors that fall into two broad categories: errors caused by energy dissipation and

those caused by quantum decoherence [1], [2]. All known physical implementations of

individual qubits (such as the state of a single photon or the spin on a single electron) are

inherently unstable because a single qubit is impossible to isolate from its surroundings

[2], [12]. The circuits described in Section B.1 all assume ideal logical qubits free from

error due to environmental interactions [12]. However, a quantum register cannot exist in

isolation—there must of course be some supporting infrastructure to maintain control

over a quantum register in order to perform useful operations upon it using quantum logic

gates [2]. Invariably, all qubits will interact with this supporting infrastructure, which will

necessarily alter their state over time [1].

The phenomenon of decoherence is described by [1] as the “loss of purity of

state” of a quantum system that occurs when that system has an interaction with its

surrounding environment that causes it to lose information. Essentially, this means that

the states of individual qubits become unstable as a result of external environmental

 25

factors such as ambient heat, cosmic ray interaction, or simply coupling with the matter

comprising the quantum circuit itself [2].

In addition to qubit errors caused by decoherence, all qubits dissipate quantum

energy, causing a change in state. Dissipation occurs when a qubit loses energy to its

surroundings [2]. This can be due to a variety of reasons such as spontaneous photon

emission or interaction with gas molecules within the quantum circuit [2]. All qubits are

subject to both decoherence and dissipation in relatively short but unpredictable time

intervals [2]. When a qubit experiences either phenomenon, the information encoded

within it is necessarily, but not always irreversibly, lost or altered [12].

The expected time for a qubit to undergo decoherence varies widely depending on

the physical implementation of the qubit [2]. Table 1 depicts the expected “cohesive

lifespan,” as well as the theoretical time required to perform a single quantum gate

operation for several different physical qubit implementations. As shown, even the most

stable qubit implementation—that based on the spin of a molecule’s nucleus—has an

expected lifespan of less than 3 hours, at which point the information encoded within the

nucleus is lost [2]. As a result, errors due to quantum decoherence are very common in

quantum computers [12]. Fortunately, there exist several intricate methods to detect and

correct the errors caused by both decoherence and dissipation [1], [2], [6], [12].

Table 1 Computational Steps until Decohesion for Various Qubit
Implementations. Adapted from [2].

Physical Qubit
Implementation

Time per Gate
Operation (s)

Expected Coherence
Duration (s)

Steps Until
Decohesion

Trapped Indium Ions 10-14 10-1 1013
GaAs Electrons 10-13 10-10 103
Electron Spin 10-7 10-3 104

Electron Quantum Dot 10-6 10-3 103
Nuclear Spin 10-3 104 107

 26

1. Classical Error Correction

The concept of error detection and correction is not peculiar to the world of

quantum computing; classical computers frequently undergo spontaneous bit-flip errors,

and many robust methods exist to detect and correct these errors [2]. Correcting bit-flip

errors in classical computers is not without cost, however, as additional bits are required

to correct the error [1], [2], [15]. In general, the more robust the error detection/correction

method, the higher the overhead required in terms of the number of physical bits that are

required for each logical bit that is used to perform actual computation [2], [6], [15].

In coding theory, classical error correction has grown into a vast field of its own.

The error correcting codes employed in modern computers and telecommunication

systems have been thoroughly studied and are generally considered extremely reliable

[1], [15]. Much of this work was developed by NASA based on the need to accurately

send information to spacecraft over great distances through channels with very low

signal-to-noise ratios [2]. In general, most classical error correcting codes map logical

bits together with error correcting bits to create “codewords.” These codewords have

been specifically engineered to have the maximum possible Hamming distance4 between

them [2]. If a codeword becomes corrupted due to a bit flip error, the correct codeword

can be recovered by replacing the incorrect codeword with the closet legal codeword (in

terms of Hamming distance) [2], [12], [15].

One of the simplest possible implementations of classical error correction is the

so-called three-bit repetition code described in [15]. Consider information being sent

from Alice to Bob over a binary symmetric channel. For the sake of this example, assume

that each logical bit, b, sent over this channel has an equal probability, p, of being flipped

in transit. In other words, Bob receives the correct bit b with probability (1-p), but

receives a flipped bit with probability p. Here, p represents the inverse of the signal-to-

noise ratio within the symmetric channel and must be less than 0.5 in order to enable

4 The Hamming distance between two strings of equivalent length is defined as the number of places

in which the two strings differ [2]. For example, binary strings 000 and 010 would have a Hamming
distance of 1.

 27

successful communication (clearly the channel is useless if p = 0.5 and with p > 0.5, Bob

can simply flip each bit he receives) [15].

Using the three-bit repetition error correcting code from [15], Alice creates a

codeword with a length of three physical bits by repeating each logical bit, b, two

additional times. If Alice wishes to transmit a 0 to Bob, she instead sends 000. In the case

of a 1, the codeword would be 111. Bob decodes each three-bit codeword he receives by

a simple majority: he decodes b as 0 if two or more physical bits are 0, and he decodes a

1 if two or more physical bits are 1 [15]. Table 2 depicts all of 23 = 8 possible codewords

that Bob can receive as well as their associated decoding.

Table 2 Classical Three-Bit Repetition Code

Codeword Received by Bob Bob’s Decoded Logical Bit (b)

000 0 (error free transmission)

001 0

010 0

100 0

111 1 (error free transmission)

110 1

101 1

011 1

If fewer than two of the bits have been flipped during transmission, Bob can now

recover the correct logical bit, b, with probability 3p2-2p3 (note that this quantity is

always smaller than p when p < 0.5) [15]. The three-bit repetition code will only correct a

single bit flip for every three physical bits, and is not as robust as many of the methods

currently in use to correct bit-flip errors [2], [15]. Nonetheless, it serves as a standard

example for implementing bit-flip error correction on classical computers.

 28

2. Quantum Error Correction

Bit-errors are much more common on quantum computers than on their classical

counterparts due to the inherent instability of a qubit [12]. Error correcting codes must

therefore be employed in all quantum circuits in order to ensure that decoherence and

dissipation related errors do not cause quantum circuits to produce incorrect results

during computation [1], [6]. Additionally, there are different types of errors possible

when encoding information in a qubit that are not possible with a classical bit [2], [12].

The only type of bit-error possible with a classical bit is a bit-flip error, since a bit has

only two possible states [2]. A qubit, however, can be in the infinitely many different

superpositions represented within the Bloch sphere [1]. Therefore, instead of merely

flipping from a state of 0 to 1 or vice versa, a qubit can shift to infinitely many different

locations within the Bloch sphere, each resulting in a loss of the intended information

encoded within that qubit’s state [2].

All classical error correcting codes, such as the three bit repetition code, are made

possible because of the fact that the basis state of a bit (0 or 1) can be inspected, and even

copied for redundancy, at any point during computation or transmission [1], [2], [6], [12].

In a quantum system, however, it is impossible to measure the state of a qubit without

irreversibly collapsing it out of its superposition; this is known as the no-cloning theorem

[1], [2]. It is therefore not possible to inspect or copy a qubit without potentially altering

that qubit’s state. As a result of the no-cloning theorem, different mechanisms of error

correction must be employed [2].

In order to avoid collapsing a logical qubit out of superposition, each logical qubit

in a quantum circuit must be encoded into a codeword that is entangled with other

physical qubits in such a way that any undesired shift within the Bloch sphere of the

logical qubit can be inferred without directly inspecting that qubit [2]. The first quantum

error correcting code was developed in 1995 by Peter Shor in [16], and since then, other

codes for detecting and correcting qubit errors have been developed [2]. These codes

entangle logical qubits with other physical qubits in such a way that a subset of the

physical qubits can be measured without interfering with the logical qubits [16]. This

allows the circuit to determine what [6] refers to as an “error syndrome.” The error

 29

syndrome indicates the type of error that has occurred to the logical qubit so that it can be

reversed by the application of the appropriate single-qubit gates from Section B.1 [6].

Just as in classical error correction, each one the different methods for detecting and

correcting logical qubit errors carries the cost of requiring additional physical qubits, as

well as syndrome qubits, for each logical qubit [1], [2], [12].

In general, there are three main categories of bit-error for a qubit: bit-flip errors,

phase-flip errors, as well as combined bit-flip and phase-flip errors [2], [6]. In a quantum

computer, a bit-flip error is induced when a qubit dissipates energy, and a phase-flip is

caused by decoherence [2], [16]. Since any 2 x 2 matrix can be rewritten as a sum of

scalar multiples of the Pauli matrices from Equation (15), it is useful to model qubit

errors using these matrices [6]. Moreover, since the Pauli matrices are all unitary, their

action upon a quantum system is reversible, meaning that any qubit error can be reversed

by simply applying the appropriate quantum gate from Section B.1 [2], [6], [16].

(1) Types of Qubit Errors

A bit-flip in a qubit is the same as in a classical bit; bit-flip errors map qubits in a

basis state of |0〉 to a state of |1〉, and qubits in a basis state of |1〉 to a state of |0〉 [2]. For a

qubit in an arbitrary superposition |ψ〉, as shown in Equation (29), a bit-flip error is

equivalent to multiplying the qubit’s state by the Pauli-X matrix from Equation (15) [6].

 |ψ 〉 =α | 0〉 + β |1〉 (29)

Equation (30) shows the multiplication of the Pauli-X matrix carried through the

state vector |ψ〉 from Equation (29) [2]. If a bit-flip error has been detected in a qubit, it

can be reversed by simply applying an X-gate to that qubit [6].

 X⋅ |ψ 〉 = 0 1
1 0

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ α | 0〉 + β |1〉() = X ⋅

α
β

⎛

⎝
⎜

⎞

⎠
⎟ =α |1〉 + β | 0〉 (30)

One type of error that is possible in a qubit but not a classical bit is a phase shift

error [2], [12]. A phase shift error in a qubit can be modeled by multiplying the state

 30

vector of the qubit by the Pauli-Z matrix, as shown in Equation (31), and can be reversed

by applying a Z-gate to the affected qubit [6].

 Z⋅ |ψ 〉 = 1 0
0 −1

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ α | 0〉 + β |1〉() = Z ⋅ α

β
⎛

⎝
⎜

⎞

⎠
⎟ =α | 0〉 − β |1〉 (31)

Qubits can also be subjected to bit-flip and phase shift errors concurrently [2], [6].

This type of error, referred to as a “bit-flip and phase shift error” can be modeled by

multiplying the qubit’s state by the Pauli-Y matrix, as depicted in Equation (32) [2].

Again, a combined bit-flip and phase shift error can be undone by applying a Y-gate to

the error-afflicted qubit [6].

 Y ⋅ |ψ 〉 = 0 −i
i 0

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ α | 0〉 + β |1〉() = Y ⋅

α
β

⎛

⎝
⎜

⎞

⎠
⎟ = i ⋅α |1〉 − i ⋅β | 0〉 (32)

3. Quantum Error Correction Codes

There are many quantum circuits designed to detect and correct the qubit errors

that inherently develop due to decoherence and dissipation [1], [2], [6]. These quantum

error correction circuits can be tested using a QCS by intentionally introducing an error

into the quantum system to ensure that the circuit detects and reverses the error [2].

Circuits designed to test various quantum error correcting schemes typically exhibit the

following common characteristics [2]:

1.) Begin with a quantum register of logical qubits and physical qubits in an

entangled state, |ψ〉.

2.) Introduce an error into the entangled state.

3.) Further entangle the state with syndrome qubits in order to decode the

entangled quantum state (including the introduced error) without disturbing the physical

qubits.

4.) Determine the error syndrome based on this inspection.

 31

5.) Apply the appropriate unitary matrix, or matrices, to correct the error and

return the quantum state to its intended original value. If the error correction scheme has

worked correctly, the quantum register will return to its initial value |ψ〉 [2].

Some of the most elementary error correcting codes are based on the classical

three-bit repetition code and serve to identify either bit-flips or phase shifts in a qubit [2],

[6]. After the type of qubit error has been correctly diagnosed, it can then be reversed

using single-qubit gates [2]. The codes to identify and correct both bit-flips and phase

shifts can be joined together in order to detect and correct a combined bit-flip and phase

shift, as shown by Shor in [16].

(1) Repetition Code for Bit-Flip Errors

Perhaps the most basic quantum error correcting code is the circuit designed to

identify and fix a single bit-flip error [2]. A single logical qubit is encoded into a three-

qubit codeword, as shown in Figure 8. The three physical qubits are entangled using

CNOT gates, after which a single bit-flip of at most one of the three physical qubits can

be detected and corrected [2], [6]. Equation (33) shows how the top qubit can be encoded

with the two other physical qubits at step |φ0〉; the top qubit is not being copied or

inspected, so this operation is permissible on the quantum level [6].

 |ψ 〉 = α | 0〉 + β |1〉()⇒α | 000〉 + β |111〉 (33)

Next, at step |φ1〉 of the simulation, a bit-flip error is introduced intentionally to

any one of the three physical qubits [2]. If the top qubit becomes flipped, the state

becomes α |100〉 + β | 011〉 . A bit-flip in the middle or bottom qubit will result in a state

of α | 010〉 + β |101〉 or α | 001〉 + β |110〉 , respectively [6].

 32

Figure 8 Quantum Circuit for Bit-Flip Error Correction. Adapted from [2].

After introduction of the bit-flip error, syndrome bits are introduced to the circuit

as target bits in a series of CNOT gates in order to help diagnose the error based on the

parity of the top and middle bit, as well as the parity of the middle and bottom bit [2].

The next five CNOT gates begin the decoding process in order to determine the error

syndrome. The first two CNOT gates determine the parity of the top and middle qubits,

while the second two CNOT gates determine the parity of the middle and bottom qubits

[2]. The syndrome qubits can then be measured in order to tell, with certainty, which

physical qubit has undergone a bit-flip error. Table 3 depicts the state of the syndrome

bits that result from each possible classical state of the top three physical qubits.

Once the error syndrome has been identified, an X-gate can be applied to the

appropriate qubit at step |φ2〉 in order to reverse the error [2]. If the syndrome bits are in

state |00〉, there is no bit-flip error and nothing need be done [2]. For any other possible

state of the syndrome bits, however, an X-gate must be applied to the jth physical qubit,

where j∈{1, 2, 3} is the decimal representation of the two syndrome bits [2], [6]. After

applying an X-gate to the appropriate qubit at |φ2〉, the reverse of the encoding procedure

from Equation (33) is applied using two more CNOT gates. The result at |φ3〉 is the

Bit-Flip

|ψ 〉

| 0〉

| 0〉

|ψ 〉

| 0〉

| 0〉

Syndrome	Bits

| 0〉

| 0〉

X-gate

j
th	
qubit

|ϕ 0〉 |ϕ1〉 |ϕ 2〉 |ϕ 3〉

Most	Significant	
Syndrome	Qubit

Least	Significant	
Syndrome	Qubit

 33

recovery of the top three physical qubits in their original state [6]. Important limitations

of this circuit are that it only detects bit-flips, and only in one of the top three qubits.

Table 3 Error Syndrome for Each Classical State in the Bit-Flip Code

Classical State of Physical Qubits State of Syndrome Qubits

|000〉 |00〉

|001〉 |11〉

|010〉 |10〉

|011〉 |01〉

|100〉 |01〉

|001〉 |10〉

|110〉 |11〉

|111〉 |00〉

(2) Repetition Code for Phase Shift Errors

Many of the same ideas used in the bit-flip quantum error correcting circuit are

also used to detect and correct phase shift errors. After entangling the logical qubit with

two physical qubits using CNOT gates, as in the bit-flip correcting code, the phase shift

circuit applies an H-gate to each physical qubit [2], [6]. Note that since (X + Z) / 2 = H

(from Equations (12) and (15)), a bit-flip in the X basis is analogous to a sign flip in the Z

basis [6]. In other words, a bit-flip error is described by X·|0〉 = |1〉 and X·|1〉 = |0〉, while

a phase shift error can be described by Z·|+〉 = |-〉 and Z·|-〉 = |+〉, where |+〉 and |-〉 are

shorthand for the expressions given in Equation (34) [2].

 34

| +〉 =

| 0〉 + |1〉()
2

| −〉 =
| 0〉 − |1〉()

2

 (34)

Figure 9 Quantum Circuit for Phase Shift Error Correction.
Adapted from [2].

After a phase shift is introduced to one of the top three qubits at |φ1〉, an H-gate is

applied to all three physical qubits and the rest of the circuit is nearly identical to the bit-

flip error correcting circuit [2]. The only minor difference is that a Z-gate instead of X-

gate is applied to the jth qubit, where j is once again determined by the syndrome bits [2],

[6]. Just as the bit-flip code can only correct a single bit-flip among the three physical

qubits, the phase shift code can only correct a single-phase shift among the three logical

qubits [6].

(3) Shor’s Nine-Qubit Error Correcting Code

In order to protect against both bit-flip and phase shift errors, the three-qubit bit-

flip code and the three-qubit phase shift code can be concatenated [2], [16]. This is the

Phase	
Shift

|ψ 〉

| 0〉

| 0〉

|ψ 〉

| 0〉

| 0〉

Syndrome	Bits

| 0〉

| 0〉

Z-gate

j
th	
qubit

|ϕ 0〉 |ϕ1〉 |ϕ 2〉 |ϕ 3〉

Most	Significant	
Syndrome	Qubit

Least	Significant	
Syndrome	Qubit

H

H

H

H

H

H

 35

essence of Shor’s nine-qubit error correcting code (commonly referred to as simply the

“Shor code”), which encodes a single logical qubit into nine physical qubits such that any

type of qubit error can be detected and reversed [16]. Figure 10 depicts a circuit diagram

for the Shor code.

Figure 10 The Shor Code. Adapted from [2].

Each of three logical qubit first encoded according to Equation (35), where a

subscripted “L” indicates a logical qubit.

| 0〉L = 1

2 2
⎛
⎝⎜

⎞
⎠⎟
| 000〉 + |111〉()⊗ | 000〉 + |111〉()⊗ | 000〉 + |111〉()

|1〉L = 1
2 2

⎛
⎝⎜

⎞
⎠⎟
| 000〉 − |111〉()⊗ | 000〉 − |111〉()⊗ | 000〉 − |111〉()

 (35)

The code that protects against phase shifts is implemented first, as indicated by

the CNOT and H-gates on qubits one, four, and seven [16]. Next, these three qubits are

|ψ 〉

| 0〉

| 0〉

|ψ 〉
H

| 0〉

| 0〉

| 0〉

H

| 0〉

| 0〉

| 0〉

H

Syndrome	
Detection	

and	
Error	

Correction	

H

H

H

Phase	Shift
Detection

Bit-Flip	
Detection

 36

entangled using the remaining CNOT gates in order to detect bit-flips [16]. Each triple of

qubits (i.e., qubits {1,2,3}, qubits {4,5,6}, and qubits {7,8,9})is responsible for detecting

bit-flip errors [2]. The error syndrome is then determined and the appropriate unitary

matrix applied to the qubit with the error in a manner similar to the previous two error

correcting codes but redacted for brevity [16]. Finally, the encoding of the nine physical

qubits is reversed, and at this point, their final state is identical to their initial state [16].

The Shor circuit protects against a single qubit error of any kind in the nine physical

qubits [2]. A mathematically detailed, step-by-step description of the Shor code is

available in [16].

D. QUANTUM COMPUTER SIMULATION

A quantum computer simulator is nothing more than a software program run on a

classical computer in order to simulate the effects of quantum gates on a register of

qubits. The process of simulating the operations of a quantum computer using a classical

computer is conceptually straightforward. The program begins with an initial state vector

a, which represents the initial state of a quantum register. This state vector must begin the

simulation in a classical state, devoid of superposition. Next, the vector a is multiplied by

the matrices corresponding to the appropriate quantum gates and/or black-box functions,

using the matrix multiplication described in Section B.1. All of the quantum algorithms

outlined in Section B.2 can be simulated on a classical computer by simply carrying out

the complex vector space matrix multiplication operations representing each gate, or

series of gates.

Measurement of a qubit, or register of multiple qubits, can be simulated through

the use of a pseudo-random number generator. A pseudo-random number, d, is generated

(such that 0 ≤ d ≤ 1) and compared to the probability of measuring the qubit in each one

of its basis states, from Equation (8). If d is smaller than the probability of measuring the

qubit in state |0〉, the simulation has “measured” the qubit in a state of |0〉. Otherwise, the

simulation has measured the qubit in a state of |1〉. Using the pseudo-random number

generator built-in to most programming languages is an easy way to simulate the

probabilistic effects of measuring a qubit in superposition. This method of simulating

 37

qubit measurement combined with the matrix operations for both single-qubit and CNOT

gates allows the simulation of a universal quantum computer capable of simulating any

and all quantum operations.

E. LIMITATIONS OF SEQUENTIAL QUANTUM COMPUTER
SIMULATORS

It is easy to simulate the effects of a quantum circuit on a quantum register

consisting of a small number of qubits using naïve matrix multiplication as previously

described. The simulation of quantum systems using this method, however, is limited by

the fact that the sizes of the matrices involved grow exponentially with the size of the

quantum system. In order to simulate an N-qubit quantum system, a complex vector, |ψ〉,

of length 2N must be stored [1], [6]. This means that nearly 1 TB of memory is required to

store a single arbitrary state for a quantum register with 36 qubits [8]. Additionally,

performing operations on these quantum states requires exponentially more resources.

For example, application of a single H-gate to the kth quantum bit of an N-qubit quantum

register requires multiplication of the register’s state vector |ψ〉 by the matrix

 M = I (0)⊗…⊗H (k)⊗…⊗ I (N − 1) . M is a dense matrix with dimensions 2Nx2N; clearly,

as the size of a quantum system grows, it rapidly becomes impossible to simulate that

system using a classical computer [8].

The exponential growth of the matrices involved with simulating a quantum system

puts both temporal and spatial limits on the size of system that can be simulated on a

classical computer [8]. It is certainly possible to study very small (on the order of 10–20

qubits on the average personal computer) quantum circuits using the matrix multiplication

method of simulating quantum states. However, many optimizations are required in order

to study much larger circuits. The first of these optimizations is to perform the matrix

multiplication operations using an in-place algorithm. This greatly decreases both the time

and memory required to simulate the effects of quantum gates upon a system’s state vector.

Next, the operations can be parallelized across multiple processors in order to increase the

amount of memory available to simulate the quantum systems. Both of these optimizations

will be discussed in detail throughout the remainder of this thesis.

 38

THIS PAGE INTENTIONALLY LEFT BLANK

 39

II. INTRODUCTION TO PARALLEL COMPUTING

A. OVERVIEW OF PARALLELISM IN COMPUTING

Over the last 70 years, computer hardware has made constant and rapid progress

in terms of processing power [17]. One of the major driving forces behind this increase in

processing power is the doubling of the transistor count on integrated circuits (ICs)

roughly every 18 to 24 months—an empirically observed trend commonly referred to as

Moore’s law [17]. A large reason for the transistor count increasing at such a fast pace is

that transistors are consistently becoming smaller; ICs with transistors roughly 14 nm in

length became commercially available in 2015 [18]. As transistors approach the size of

atoms however, there must of course be some fundamental lower limit to the size of a

transistor and thus to Moore’s law. The trend in pure transistor density increase has also

slowed down in the past decade due to power-density and heat dissipation concerns [19].

Additionally, a trend known as Rock’s law, which states that the cost of fabricating a

foundry for these ICs roughly doubles every four years, also operates in competition with

Moore’s law [17]. As a result of Rock’s law, building a state-of-the-art foundry as of

2015 costs around $14 billion, which is prohibitively expensive for most organizations

[20]. Physical transistor size limits, heat dissipation, and Rock’s law are all factors are

inhibiting the growth of chips in terms of pure transistor count. However, other computer

hardware developments have enabled processors to perform computation with

significantly more efficiency, regardless of transistor count [17], [21].

 Most advancements in computer architecture that do not involve increasing

transistor count on an IC are a result of harnessing various levels of parallelism in order

to perform tasks more efficiently [17], [21], [22]. In computer science, parallelism is an

overloaded term that refers to performing multiple computations simultaneously, either

on the same processor or distributed among various processors. Hennessy and Patterson

[17] have classically grouped all types of parallelism into two broad categories: Data-

Level Parallelism (DLP), where many separate elements of data are operated on

simultaneously, and Task-Level Parallelism (TLP), in which different tasks are created

that can be executed independently.

 40

1. Bit Level Parallelism

Bit level parallelism was the first and most primitive type of parallelism exploited

by computer architects in order to improve processor performance [21]. This early form

of DLP involved increasing the size of a computer “word,” which is the amount of data

that a computer can manipulate in a register in one clock cycle. From about 1970 to 1986,

the word size used by most general purpose processors doubled incrementally from 4-bit

words to 32-bit words [21]. In the mid-1990s, this trend increased to 64-bit words with

the advent of the backwards-compatible Intel x86-64 architecture [21].

Increasing the word size of a computer’s registers clearly enables the computer to

process more information at once. For example, a computer with an 8-bit register can

easily add two 8-bit numbers in a single operation. On the other hand, a computer with

registers consisting of only 4 bits that attempts to add two 8-bit numbers must first add

the least significant 4 bits, and then, in a separate instruction, add the most significant 4

bits together with a carry value. As of the early 2000s, this type of parallelism has

plateaued among general-purpose CPUs at 64-bit words, which leaves sufficient accuracy

for floating point number representation in most situations [22].

2. Instruction Level Parallelism

At a higher level of abstraction than bit-level parallelism lies another type of DLP,

known as instruction level parallelism. Using instruction level parallelism allows a single

CPU to execute multiple instructions concurrently [21]. Instruction level parallelism

takes advantage of how a CPU executes individual instructions, and utilizes concepts

such as instruction pipelining and speculative execution to execute and schedule

instructions more efficiently [17], [21].

Instruction pipelining works by overlapping the execution of multiple instructions

at different stages of their instruction cycles [17]. Pipelining takes advantage of the fact

that CPU instructions are typically executed in discrete steps, each of which are

performed by separate, dedicated hardware entities [21]. Instruction cycles vary widely

from chip to chip. The classic example of a CPU instruction cycle consists of the

following steps: fetch, decode, execute, and write [21]. The CPU first retrieves the next

 41

instruction from memory during the fetch step, then decodes the fetched instruction. The

decoded instruction is then executed, and if required, the results are written back to

memory or another register [21]. The instruction cycle is then repeated for the next

instruction to be executed. Older CPUs performed these steps sequentially for every

instruction in a computer program. However, executing instructions sequentially is

extremely inefficient since reading from and writing to memory are temporally expensive

operations compared to most computation [17]. Therefore, many CPU clock cycles are

wasted if the CPU is idle while waiting for the next instruction to be fetched or a value to

be written to physical memory. Modern CPUs implement instruction-level parallelism

through utilization of an instruction pipeline that prevents wasted clock cycles [17], [21].

In an instruction pipeline, a CPU executes multiple instructions concurrently, each

at different steps of their instruction cycle. In the example instruction cycle given above,

a CPU can theoretically be in the process of executing four different instructions during

any particular clock cycle. Each of these instructions is at a different stage of the fetch,

decode, execute, and write cycle [17]. It is worth noting that this can be done only if there

are no data or control dependencies between the instructions being concurrently executed.

All modern CPUs utilize an instruction pipeline with various levels of complexity [17].

The Intel Pentium 4, for example, has a 31 stage instruction cycle, enabling a very high-

throughput but very complicated instruction pipeline [23].

In conjunction with pipelining, modern processors utilize the techniques of

speculative execution and branch prediction in order to speed up computation [17]. If a

processor has clock cycles that are not being used for whatever reason, it can perform

computation during these idle clock cycles before it knows whether or not the results of

this computation will be used at all [17]. A classic example of this is a conditional branch

of code (i.e., an “if” statement). A CPU with available resources can compute the results

of a conditional branch before it actually evaluates the predicate of the conditional and

determines which branch will be taken. Moreover, a CPU can attempt to predict which

conditional branch will be taken before the conditional predicate is evaluated; this is

known as branch prediction and is used together with speculative execution in nearly all

modern processors. There are many different implementations of branch prediction and

 42

speculative execution, but their overall effect is to reduce response time in many

situations [17], [21], [22].

Instruction level parallelism is almost always implemented implicitly (either in

hardware, software, or both), with little to no involvement of the programmer or user

[17], [21]. In hardware, instruction level parallelism is exploited dynamically at run time,

whereas in software, it is discovered by the compiler and exploited statically at compile

time [17]. In either case, the end user need not be aware that instruction level parallelism

is occurring, and the result is indistinguishable from a faster, more efficient processor.

One main advantage of this is that programs written sequentially are implicitly exploited

for parallel execution by both the compiler and the processor. In order to exploit higher

levels of parallelism between multiple threads or processors, however, more advanced

parallel programming techniques are required [17], [21], [22].

3. Thread Level Parallelism across Multiple Processors

Parallelism at the thread level can be both DLP and TLP [17]. Most modern

operating systems coordinate the execution of multiple threads on a single processor; this

technique is known as multithreading [21]. Multiple threads can also be distributed to

perform computation simultaneously across multiple separate processors according to

either a tightly-coupled or loosely-coupled memory model. In the tightly-coupled

memory model, referred to in [17] as “centralized shared-memory multiprocessing,” a

group of processors are controlled by a single operating system and perform computation

using the same memory and address space. This model of shared-memory processors is

commonly used in multi-core processors on today’s personal computers, usually with

eight or fewer total processors [17]. The advantage of having tightly-coupled processors

is that communication between the processors is easy since the processors all have access

to the same memory. This also means that all processors have the same memory latency,

and as a result, this type of multiprocessor is also referred to as a “uniform memory

access multiprocessor” [17].

As the number of processors increases, however, so does the latency associated

with memory access due to the increased memory bandwidth [22]. In order to support a

 43

large number of processors (e.g., hundreds), memory must be distributed among the

processors in order to decrease the latency of each processor’s memory access [17], [22].

The result is the loosely-coupled distributed shared memory (DSM) model, where each

processor has both direct access to local memory attached to its own core, as well as

indirect access to non-local memory attached to another processor’s core [17]. This type

of memory model is common among high-performance scientific computer clusters [21].

Distributing memory among processors reduces the latency of local memory access, since

each processor’s local memory is located near its own core [17]. However, accessing

remote memory associated with another processor’s core involves communication

between the two processors, which is much more difficult to coordinate [17], [21].

Programmers must expend significant effort in order to implement efficient

communication between processors and thus take full advantage of the increased memory

bandwidth [21]. An efficient inter-processor communication mechanism enables the use

of hundreds of processors to perform computation in parallel. Ideally, processors will

only exchange communication when absolutely necessary, thus resulting in significant

speedup for certain problems [22].

B. PARALLEL PROGRAMMING, THE MESSAGE PASSING INTERFACE,
AND THE JULIA LANGUAGE

There are many different communication protocols and programming languages

available to implement parallel programming across multiple processors [17], [21], [22].

This thesis will implement parallel quantum computer simulation in the Julia language

using the Message Passing Interface (MPI).

1. Parallel Programming with MPI

One of the most commonly used methods of implementing parallel program

execution is a communication protocol known as MPI [21]. In the MPI paradigm,

programs are split among multiple processors. Each processor executing an MPI program

typically only executes one thread or process. The idea is to partition a large

computational task into many smaller sub-tasks, which are each assigned to different

processors for independent execution [21].

 44

The processors execute the program with a distributed memory model, meaning

each processor has exclusive access to its own local memory [21]. However, these

processors can share data in their local memory with other processors by engaging in

message-passing [21]. Two processors, proc0 and proc1 engage in message-passing as

follows: proc0 “packs” a message in a buffer and sends that message to proc1, which

receives the message in a buffer in its own local memory. Messages can be sent either

from one individual processor to another (known as point-to-point communication), or

broadcast to all other processors [21]. MPI also operates under the assumption that every

processor can exchange messages with every other processor [21].

The format for sending these messages is given in various MPI communication

libraries [21], [24]. This thesis will use the OpenMP implementation of MPI, which has

language bindings available for C, C++, as well as Fortran [24]. Official documentation

of the OpenMP MPI library is available in [24]. This thesis will focus on the specification

known as MPI-1, which uses a static process model. The static process model means that

the number of processors running a program is fixed when the program starts and cannot

be changed [21]. In another specification, MPI-2, processes can be dynamically started

and stopped during a program’s execution [21].

Theoretically, each processor in an MPI program is capable of executing a

different program, but in practice most MPI programs involve each processor running the

same program on their own locally stored data (or at least different parts of the same

program) [21]. An MPI program running on P processors is said to have a size of P, and

the processors are indexed arbitrarily from 0 to P-1 [24]. This index is known as the

processor’s rank, which serves to uniquely identify it from the other processors [24]. It is

important to designate only a single processor (e.g., processor 0) to conduct input/output

(I/O), otherwise, all processors will be executing I/O separately and there is no way to

control their order.

There are two main categories of communication between processors in MPI. The

first is blocking communication, where communication completes before control is

returned to the calling process and the next line of code is executed [21], [24]. At the

point control is returned, all the data in a processor’s send and/or receive buffer is valid

 45

and can be used in computation. In contrast to blocking communication is non-blocking

communication [21]. In non-blocking communication, control is returned immediately to

the calling process and the next line of code is executed; the programmer must separately

ensure that the results in the processor’s send/receive buffers is valid and can be written

over [21], [24].

It is imperative to coordinate blocking and non-blocking communication when

programming in MPI to avoid both deadlock and race conditions. Deadlock results when

two or more processors are in a mutual waiting condition that cannot be resolved and

most commonly occurs with blocking communication [21]. If non-blocking

communication is incorrectly implemented, a race condition can develop where a shared

value is operated on by multiple processors simultaneously with unpredictable results

[21]. Improperly coordinated communication among processors will thus result in a

program that does not terminate, or produces incorrect results; either case can be very

difficult to debug, since the results may vary each time the code is executed [21], [24].

2. Julia Programming Language

All programs in this thesis are written in the Julia programming language, which

is a high-level language designed by researchers at MIT for high-performance technical

computing [25]. Syntactically, Julia is similar to other technical computing languages

such as MATLAB or Wolfram Mathematica. The C++ MPI library has also been

wrapped for native use in the Julia language. Julia code is compiled using a low-level

virtual machine just-in-time compiler, meaning that compilation of code is performed

during the execution of the program, as opposed to prior to execution. The just-in-time

compilation method allows the performance of Julia based code to approach the

performance of C code in many situations. The performance of Julia code is compared

with that of other languages relative to C across various benchmarks in Figure 11 from

[25].

In Figure 11, C performance is equal to 1.0 with a smaller number indicating

speedup over C performance. Julia code is only able to outperform C on several

benchmarks, but overall Julia can be seen to have the best performance of any of the

 46

other high-level languages. Full details of this experiment including source code for each

benchmark are available at [25]. Ultimately, Julia is the language of choice for this thesis

because of its high level of abstraction, its easy compatibility with MPI, as well as high

performance across various benchmarks.

One final note about Julia is that it uses 1-based indexing (as opposed to the 0-

based indexing in languages such as C or Python). Therefore, converting arrays back and

forth from 0- to 1- based indexing will be required in a lot of the code for this thesis.

Figure 11 Performance of Various Languages Relative to C across Several
Benchmarks. Adapted from [25].

C. PARALLEL ALGORITHM PERFORMANCE ANALYSIS: AMDAHL’S
LAW AND GUSTAFSON’S LAW

In 1967, computer scientist Gene Amdahl famously developed a formula to

quantify the theoretical speedup obtainable through improving some portion of a

computer program [17], [21], [22], [26]. In the general case of Amdahl’s law, speedup is

0.1	

1	

10	

100	

1000	

10000	

Fort
ran

Jul

ia

Pyth
on

 R

MATLAB

Octa
ve

Math
em

ati
ca

Jav
aS

cri
pt Go

Lua
JIT

Jav

a

P
er

fo
rm

an
ce

 R
el

at
iv

e
to

 C

Language

fib

parse_int

quicksort

mandel

pi_sum

rand_mat_stat

rand_mat_mul

 47

defined as the ratio of the execution times of the computer program with and without the

performance improvement [17]. Speedup reveals how much faster (or slower, in the case

of a performance degradation) a computer program will run after the performance

enhancement [17]. From [22], Amdahl’s law to describe the speedup of an entire task can

be written as a function of s, which is the speedup in latency of the part of the computer

program that benefits from the performance enhancement, as shown in Equation (36).

 Speedupoverall(s) = Execution timeold
Execution timenew

= 1

1− f() + f
s

 (36)

In Equation (36), f is the fraction of the execution time of the whole task (before

the performance gain) that is spent running the part of the task that is receiving the

performance improvement [22]. One of the main implications of Amdahl’s law in

sequential code is to focus on improving routines that comprise a large portion of a

program’s execution. This effect can be seen in Equation (37); speedup in latency is

clearly minimal for small values of f [26].

Amdahl’s law was originally envisioned for sequential processing on a single

core, but has also been adapted to analyze the theoretical speedup obtained in parallel

code [26]. The theoretical speedup in latency for parallelizable code, Sp, is given as a

function of the number of processors, p, and a fixed size of the problem to be solved, n, in

Equation (37).

 Sp(n, p) = T *(n)
T (n, p)

= T *(n)

f ⋅T (n)+ 1− f
p

⎛
⎝⎜

⎞
⎠⎟
⋅T (n)

= 1

f + 1− f
p

⎛
⎝⎜

⎞
⎠⎟

≤ 1
f

 (37)

In Equation (37), T*(n) is the latency of the sequentially executed program on

problem size n, T(n,p) is the latency of the parallelized algorithm for a problem of size n

running on p processors, and f is the fraction of inherently sequential computation [21].

Note that this version of Amdahl’s law assumes that the parallel portion of the algorithm

 48

used has been “perfectly parallelized” into precisely equal sub-tasks for each processor

[21], [22], [27].

The most important implication of the parallel core version of Amdahl’s law is

that the fraction of code executed sequentially, f, serves as a theoretical upper bound for

the obtainable speedup, regardless of the number of processors used [21]. For example,

consider a program that must be executed 50% sequentially. Even with an infinite amount

of processors, the maximum achievable speedup is Sp(n) = 1 0.5 = 2 .

As previously mentioned, Amdahl’s law for parallel cores as given in Equation

(37) only determines speedup for problems of a fixed size. Therefore, it is only possible

to study how increasing the number of processors contributes to the speedup of a fixed-

size problem; this is known as the strong scalability of the problem [17], [27]. Clearly,

from Equation (37), even so-called “embarrassingly parallel” problems that are easily

adapted for parallel execution will begin to lose appreciable speedup as the number of

processors p increases beyond a certain point [21].

Amdahl’s law does not allow for analysis of a problem’s weak scalability, which

assumes a fixed problem size per processor [17], [27]. For many problems it is more

important to study the weak scaling by varying the size of the problem while simultaneously

varying the number of processors available [27]. In 1988, John Gustafson adapted Amdahl’s

law to analyze execution times as the problem size is allowed to change [28]. What has

become known as Gustafson’s law to compute the speedup of a parallel algorithm, Sp,

running on a problem of size n across p processors is shown in Equation (38). Here, s(n,p) is

the fraction of time spent performing sequential operations [28].

 Sp(n, p) = p + (1− p) ⋅ s(n, p) (38)

For any problem that can be adequately parallelized across multiple processors,

Amdahl’s law can be used to study the strong scaling by increasing the number of

processors for a fixed problem size [21], [26]. At the same time, Gustafson’s law can be

used to see how the problem scales as the size of the problem increases linearly with the

number of processes available to perform computation [27], [28]. Both of these laws are

 49

used together to determine the most efficient way to utilize computational resources in

the multicore environment [17], [27].

D. APPLICATION TO QUANTUM COMPUTER SIMULATION

Modeling real-life phenomenon using computers can often require a very large

amount of computational resources, including both CPU time and memory—this is

certainly true in the case of simulating quantum systems. As described in Chapter 1, in

order to simulate a quantum register consisting of N qubits, a QCS must maintain a state

vector of length 2N [8]. Furthermore, applying a single quantum gate to one qubit in the

quantum register requires multiplying the state vector by a dense 2Nx2N matrix. The

simulation of a quantum system will thus involve both memory and time bottlenecks as

the size of the system increases. Even with a state-of-the-art processor, it will be

impossible to simulate a quantum circuit with a sufficient amount of qubits due to the

limits on the processor’s available memory. The exponential nature of the growth of the

matrices involved with simulating the system simply result in matrices that are too large.

In order to more efficiently simulate a large quantum system, the work can be

spread among numerous processors. The next chapter details the implementation of a

QCS using MPI in order to simulate quantum systems that are too large to simulate on a

single processor.

 50

THIS PAGE INTENTIONALLY LEFT BLANK

51

III. DEVELOPMENT OF A PARALLEL QUANTUM COMPUTER
SIMULATOR

A. OPTIMIZING A SEQUENTIAL QCS

Before implementing a QCS that is executed in parallel across multiple nodes, we

optimized the existing simulator to incorporate a matrix-free, in-place algorithm that

vastly improved both time and memory performance of the sequential code. The

optimized sequential QCS takes as input text files which carry descriptions of quantum

circuits in what we call Quantum Description Language, adapted from the sequential,

full-matrix QCS implemented in Java from [29].

1. Quantum Description Language

Quantum Description Language (QDL) is an intuitive text-based method of

describing quantum circuits that is easily read by humans as well as easily parsed by

computers using any standard high-level programming language. The idea behind QDL is

to create a simple method of encoding quantum circuits in any standard text editor that can

be parsed and adapted for use on any QCS without having to hard-code matrices and state

vectors by hand in Julia or other languages. For comparison purposes, QDL was adapted

with backwards compatibility in mind so that most circuits that can be simulated on the

QCS from this thesis can also be simulated on the Java-based QCS from [29]. The only

exceptions are circuits with a sufficiently large number of qubits, whose simulation is

possible on this Julia QCS but not the Java QCS from [29] because of lack of memory (due

to the full-matrix simulation implementation). An example QDL file is depicted below,

which represents the quantum circuit for Deutsch’s algorithm, as shown in Figure 4.

Define N 2

Define U 4

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

Define Phi0

52

0 1

Define Transform1

H I

Define Transform2

I H

Define Transform3

U

Define Transform4

H I

Define Transform5

M I

The QDL file begins by defining an N value, which is the number of qubits in the

simulated quantum system (in this case, two). An N value is required in every QDL file.

Next, the unitary transformation matrix U is defined; in this case the matrix U is the

unitary transform matrix given in Equation (22), which corresponds to the black-box

function depicted in Figure 3 and Figure 4. A transformation matrix is not required for

circuits that do not utilize a transformation matrix. If no transformation matrix is required

for a circuit, these lines are omitted, and Phi0 is defined directly after N. If the

transformation matrix is required, the Phi0 value is defined immediately after the

encoding of the unitary matrix U. A Phi0 definition is required for every quantum circuit,

and the number of bits defined must correspond to the number N. Additionally, only the

classical binary values 0 and 1 are allowed in this field. Phi0 corresponds to the initial

classical state of the quantum register, |ϕ0〉, which in this case is |0〉 for the upper qubit

and |1〉 for the lower qubit. After declaring the initial state of the quantum register,

Transform1 - Transform5 are defined. These correspond to the unitary transform matrices

for each step of the quantum circuit. In this case, Transform1 corresponds to the matrix

H ⊗ I , Transform2 to I ⊗H , Transform3 to the unitary black-box matrix U,

Transform4 again to H ⊗ I , and Transform5 to a probabilistic measurement of the upper

qubit.

53

Transforms using all gates described in Section I.B.1 are possible and should be

fairly intuitive for the other single-qubit gates. For instance Z I in QDL corresponds to

the transformation matrix Z⊗ I , I Y I I corresponds to I ⊗Y ⊗ I ⊗ I , etc.

Multiple-qubit gates can also be encoded into the QCS using QDL. For a CNOT

gate, the words “Control” and “Target” are specified in the index of their respective

qubits. An example QDL encoding of a transform involving a CNOT gate is shown

below:

Define Transform1

I I I Control I Target I I I

The above QDL transform corresponds to a nine-qubit register with a CNOT5,3

gate, meaning the third qubit is the control qubit and the fifth qubit is the target qubit

(recall qubits are ordered with 0-based indexing). Perhaps not as intuitive is the

implementation of the Toffoli gate in QDL, as depicted below:

Define Transform1

UT1 I I UT2 I I UT3 I I

This QDL transform describes another nine-qubit register with a T0,3,6 gate. In

QDL, UT1 corresponds to the target qubit, UT2 corresponds to the first control qubit,

and UT3 corresponds to the second control qubit. “UT” in this context stands for

“Upside-down Toffoli” gate; this is a carryover from the simulator’s implementation

from [29] in order to ensure backwards compatibility. The Julia code to parse an entire

QDL file for simulation is somewhat lengthy but trivial to implement. As such, it has

been redacted from this text for brevity but can be found in the code for the full

sequential simulator in the supplementary code repository for this thesis. Moreover, the

parser is only intended for academic use and thus is not very robust in that it assumes a

well-formed QDL file. Any QDL files with syntactical errors or impossible quantum

circuits will either produce unpredictable results or cause the simulator program to crash.

2. Simulating Quantum Gates In-Place

After parsing the QDL file, the first step of simulation is to generate a state vector

representing the initial classical value of the quantum system. In the Julia code for the

 54

simulator (located in this thesis’ supplemental code repository), this state vector is the

buffer a. For a quantum system of N qubits, the vector a is clearly always of length 2N.

The basis states and corresponding complex amplitudes of the state vector a representing

an arbitrary quantum register can be represented in binary, as shown in Equation (39).

|ψ 〉 = a(0(0)0(1)…0(N))⋅ | 0(0)0(1)…0(N)〉 +…

…+ a(0(0)0(1)…1(N))⋅ | 0(0)0(1)…1(N)〉 +…+ a(1(0)1(1)…1(N))⋅ | 1(0)1(1)…1(N)〉
 (39)

Moreover, since the quantum register begins each quantum circuit in a classical

state, it of course must represent a single value with 100% probability. Therefore, the

state vector can be generated easily by allocating a vector of zeros of length 2N with a

single 1 value at index k+1. Adding 1 to the value k is required since Julia uses 1-based

indexing instead of 0-based indexing. The value of the index k, in binary format, is

simply equal to the initial value in the quantum register, Phi0. The following Julia

function generates the initial state vector a.

function generateA(phi, N)

 A = zeros(2^N)

 A[phi+1] = 1

 return A

end

After generating the initial classical state vector a, quantum gates are applied to

the quantum register for every transform indicated in the QDL file. Generating a 2Nx2N

unitary matrix for each transform in a quantum circuit is incredibly expensive in terms of

both CPU time and memory. For example, over 17 GB of memory is required just to

store the unitary transform matrix for a 17 qubit simulation. Furthermore, the size of this

matrix doubles for every qubit added to the simulated register as discussed in Section I.E.

In order to greatly reduce the memory and time required to perform these unitary

transform operations, they can be done in-place using a matrix-free algorithm.

Two buffers, a and a_prime, are created in order to execute the in-place

algorithm. Each buffer stores a column vector of length 2N where each element represents

a complex amplitude of each basis state of the quantum system. The vectors a and

 55

a_prime represent the state of the quantum system before and after (respectively) any

particular unitary transform. After the transform operation has been performed, the

pointers for the two buffers are swapped. As an example, Equation (40) depicts the full-

matrix relationship between a and a_prime for an N-qubit quantum system in which an

H-gate is applied to the kth qubit.

 a_ prime = I (0)⊗ I (1)⊗…⊗H (k)⊗ ...⊗ I (N − 2)⊗ I (N − 1)[] i a (40)

As previously mentioned, it is possible to perform this operation without

generating the series of Kronecker products that results in the full 2Nx2N matrix. As noted

in [8], applying the Hadamard transform from Equation (13) to the kth
 qubit of the

quantum register represented by the vector a is equivalent to transforming the amplitudes

of a to those of a_prime, as shown in Equation (41). Here, the asterisks indicate that the

values in the corresponding indices are identical.

a_ prime *…*0(k) *…*() = 1
2

a *…*0(k) *…*() + a *…*1k) *…*()⎡⎣ ⎤⎦

a_ prime *…*1(k) *…*() = 1
2

a *…*0(k) *…*()− a *…*1(k) *…*()⎡⎣ ⎤⎦
 (41)

As a concrete numerical example, consider a three-qubit system where all three

qubits have initial values of 0 and an H-gate is applied to the most significant qubit. In

QDL, this system is encoded as

Define N 3

Define Phi0

0 0 0

Define Transform1

H I I

The initial state vector, a, for this quantum register is given in Equation (42),

which corresponds to a classical value of 0.

 a = 1 0 0 0 0 0 0 0⎡⎣ ⎤⎦
T

 (42)

 56

To apply an H-gate to qubit zero naively, the state vector is simply multiplied by

the 8x8 matrixH ⊗ I ⊗ I . The result of performing this matrix multiplication is shown in

Equation (43).

 a_ prime = H ⊗ I ⊗ I[]⋅a = 1
2

0 0 0 1
2

0 0 0
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (43)

Alternatively, the in-place algorithm from Equation (41) can be used to determine

the new state, a_prime without forming the full H ⊗ I ⊗ I matrix. This is done by

iterating through each of the 2N indices of the vector a_prime and determining the value

at each index based on Equation (13). All values of a are known prior to applying the

transformation matrix, so they can be simply substituted in algebraically. This is done in

Equation (44), where the bold values indicate the qubit to which the H-gate is being

applied (this value is referred to as boldbit in the Julia code).

a_ prime 010() = a_ prime 0002() = 1
2
⋅ a 0002() + a 1002()⎡⎣ ⎤⎦ =

1
2
⋅ 1+ 0[] = 1

2

a_ prime 110() = a_ prime 0012() = 1
2
⋅ a 0012() + a 1012()⎡⎣ ⎤⎦ =

1
2
⋅ 0 + 0[] = 0

a_ prime 210() = a_ prime 0102() = 1
2
⋅ a 0102() + a 1102()⎡⎣ ⎤⎦ =

1
2
⋅ 0 + 0[] = 0

a_ prime 310() = a_ prime 0112() = 1
2
⋅ a 0112() + a 1112()⎡⎣ ⎤⎦ =

1
2
⋅ 0 + 0[] = 0

a_ prime 410() = a_ prime 1002() = 1
2
⋅ a 0002()− a 1002()⎡⎣ ⎤⎦ =

1
2
⋅ 1− 0[] = 1

2

a_ prime 510() = a_ prime 1012() = 1
2
⋅ a 0012()− a 1012()⎡⎣ ⎤⎦ =

1
2
⋅ 0 − 0[] = 0

a_ prime 610() = a_ prime 1102() = 1
2
⋅ a 0102()− a 1102()⎡⎣ ⎤⎦ =

1
2
⋅ 0 − 0[] = 0

a_ prime 710() = a_ prime 1112() = 1
2
⋅ a 0112()− a 1112()⎡⎣ ⎤⎦ =

1
2
⋅ 0 − 0[] = 0

 (44)

Julia code to perform this iteration is shown below. First, a bitmask value, mask,

is created in order to identify the index of the qubit that is undergoing the Hadamard

 57

transform. The value mask is determined by taking the bitwise XOR of the value 2N-1 (

 1(0)1(1)…1(N − 2)1(N − 1) in binary) with the temporary value tempIndex. The value of

tempIndex is equal to (1<<(N-1-h)), where N is the number of qubits, h is the index of the

qubit to which the H-gate is applied, and “<<“ indicates the logical left bitshift operation .

Table 4 depicts the mask value in both binary and decimal format for all three possible H-

gate locations in the three-qubit example system.

scalar = 1/sqrt(2)

tempIndex = (1<<(N-1-h))

mask = (2^N - 1) $ tempIndex

for i = 0:(2^N)-1

 boldbit = (i >> (N - 1 - h)) & 1

 if boldbit == 0

 a0 = (i & mask)

 a1 = (i & mask | tempIndex)

 a_prime[i+1] = (a[a0+1] + a[a1+1])*scalar

 elseif boldbit == 1

 a0 = (i & mask)

 a1 = (i & mask | tempIndex)

 a_prime[i+1] = (a[a0+1] - a[a1+1])*scalar

 end

end

Table 4 Possible Mask Values for H-Gates on a Three-Qubit Register

h (Index of H-Gate) tempIndex Value Resultant Mask

0 410 (1002) 310 (0112)

1 210 (0102) 510 (1012)

2 110 (0012) 610 (1102)

The algorithm next iterates through each index, i, of a_prime and populates each

associated value a_prime(i). For each iteration, the boldbit value is determined based on

 58

the binary representation of each index from Equation (44); this value is always either

zero or one. Two intermediate values, a0 and a1, are then determined.

The first intermediate value, a0, is computed by taking the bitwise AND of the

mask value and the binary representation of the index i. This is made possible because the

value of the mask in a register of length N will be a string of N 1’s where the hth 1 has

been replaced with a 0. For any binary value X, performing the operation X∧1 will

always return the original value X, while the operation X∧0 will always return the value

0 (here “∧” indicates the logical AND operation).

The value a1 uses this same result of the previous bitwise AND operation from

a0. The bitwise OR operation is performed on the value a0 and the previously computed

tempIndex value. A simple analysis by hand will show that the results of these bitwise

operations will indeed produce the values shown in Equation (44)

If the boldbit value is 0, the value of a_prime at index i is equal to the scalar

multiplied by the sum of the values of a at indices a0 and a1. In other words,

a_ prime i +1() = 1
2

a a0() + a a1()() ; again, 1 must be added to the index i because

Julia uses 1-based indexing. If the boldbit value is 1, however, the value of a_prime at

index i is equal to the scalar multiplied by the difference between a(a0) and a(a1), as

given in Equation (41).

After the iteration through all indices of a_prime is complete, the pointers for

buffers a and a_prime are swapped. Thus, the state vector a_prime becomes the initial

state vector a for the next unitary transformation.

As another numerical example, consider the same three-qubit system as above but

with the most significant qubit initialized to 1. A QDL encoding of this circuit is as

follows:

Define N 3

Define Phi0

1 0 0

Define Transform1

 59

H I I

The initial state vector of the quantum register is now in a classical state of 4, as

indicated in Equation (45).

 a = 0 0 0 0 1 0 0 0⎡⎣ ⎤⎦
T

 (45)

The same bitwise operations are shown in Equation (46) in order to determine

each value of a_prime.

a_ prime 010() = a_ prime 0002() = 1
2
⋅ a 0002() + a 1002()⎡⎣ ⎤⎦ =

1
2
⋅ 0 +1[] = 1

2

a_ prime 110() = a_ prime 0012() = 1
2
⋅ a 0012() + a 1012()⎡⎣ ⎤⎦ =

1
2
⋅ 0 + 0[] = 0

a_ prime 210() = a_ prime 0102() = 1
2
⋅ a 0102() + a 1102()⎡⎣ ⎤⎦ =

1
2
⋅ 0 + 0[] = 0

a_ prime 310() = a_ prime 0112() = 1
2
⋅ a 0112() + a 1112()⎡⎣ ⎤⎦ =

1
2
⋅ 0 + 0[] = 0

a_ prime 410() = a_ prime 1002() = 1
2
⋅ a 0002()− a 1002()⎡⎣ ⎤⎦ =

1
2
⋅ 0 −1[] = − 1

2
⎛
⎝⎜

⎞
⎠⎟

a_ prime 510() = a_ prime 1012() = 1
2
⋅ a 0012()− a 1012()⎡⎣ ⎤⎦ =

1
2
⋅ 0 − 0[] = 0

a_ prime 610() = a_ prime 1102() = 1
2
⋅ a 0102()− a 1102()⎡⎣ ⎤⎦ =

1
2
⋅ 0 − 0[] = 0

a_ prime 710() = a_ prime 1112() = 1
2
⋅ a 0112()− a 1112()⎡⎣ ⎤⎦ =

1
2
⋅ 0 − 0[] = 0

 (46)

Note that the final results of this operation, as shown in Equation (47), are

identical to the previous example except with a sign flip on the 4th element of a_prime .

In other words, when both example circuits are complete, there is exactly a 50%

probability of measuring the register in a classical state of 0, or a classical state of 4.

 a_ prime = 1
2

0 0 0 − 1
2

⎛
⎝⎜

⎞
⎠⎟
0 0 0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

 (47)

 60

Other single-qubit gates can be applied using the same methodology, as shown in

Equations (48)–(50), adapted from [8]. The full Julia code for implementing other single-

qubit gates using the in-place algorithm is included with the full code of the simulator in

the supplemental code repository.

X - gate transformation :

a_ prime *…*0(k) *…*() = 1
2

a *…*0(k) *…*() + i ⋅a *…*1k) *…*()⎡⎣ ⎤⎦

a_ prime *…*1(k) *…*() = 1
2

a *…*1(k) *…*()− i ⋅a *…*0(k) *…*()⎡⎣ ⎤⎦

 (48)

Y - gate transformation :

a_ prime *…*0(k) *…*() = 1
2

a *…*0(k) *…*() + a *…*1k) *…*()⎡⎣ ⎤⎦

a_ prime *…*1(k) *…*() = 1
2

a *…*1(k) *…*()− a *…*0(k) *…*()⎡⎣ ⎤⎦

 (49)

R(φ)-gate transformation :
′a *…*0(k) *…*() = a *…*0(k) *…*()
′a *…*1(k) *…*() = eiφa *…*1(k) *…*()

 (50)

The Julia QCS implements the in-place algorithm for multiple-qubit gates using

the same methodology as for single-qubit gates. The algorithm iterates through the

indices of a_prime and computes a value for each index based on both the gate locations

and the values in the current a buffer. Julia code for the implementation of the CNOT

gate is included below, where C and T are the indices of the control and target qubits

respectively:

for i = 0:((2^N)-1)

 controlQubit = (i >> (N - 1 - C)) & 1

 targetQubit = (i >> (N - 1 - T)) & 1

 if targetQubit == 0

 antiTarget = 1

 elseif targetQubit == 1

 61

 antiTarget = 0

 end

 if controlQubit == 1

 mask = (2^N-1) $ (1 << (N-1-T))

 targetShift = (antiTarget << (N-1-T))

 index = ((i & mask) | targetShift)+1

 a_prime[i+1] = a[index]

 end

end

For each iteration i, the binary representations of the indices of both the control

and target qubits are determined using bitshift operators. An intermediate value, called

antiTarget then is created and defined as the opposite of the classical value of the target

qubit. Next, a bitmask is created using the same bitwise XOR operation that was used to

create the mask for the application of the H-gate.

Finally, an index value is calculated as follows. First the bitwise AND of the

bitmask and the iterator i is determined, and this value undergoes a bitwise OR with the

value targetShift. The intermediate targetShift value is computed by logically left-shifting

the antiTarget value by (N-1-T) bits. The rationale behind the left shift operation is that

for any binary value X, X ∨ 1 = 1 and X ∨ 0=X, (where “∨” indicates the logical OR

operation) . The possible values of the results of this logical left shift operations are

shown for all values of antiTarget and T in a three-qubit system in Table 5. Finally, 1 is

again added to this index due to Julia’s 1-based indexing.

 62

Table 5 Values after the Left-Shift Operation in the CNOT Gate for N=3.

antiTarget T (Index of Target Qubit) targetShift Value

0 0 010 (0002)

0 1 010 (0002)

0 2 010 (0002)

1 0 410 (1002)

1 1 210 (0102)

1 2 110 (0012)

The Julia implementation of the Toffoli gate is unsurprisingly very similar to that

of the CNOT gate with the addition of a second control qubit. Julia code to iterate through

the indices of a_prime and update the values after application of a Toffoli gate is shown

below:

for i = 0:((2^N)-1)

 controlQubit1 = (i >> (N - 1 - C1)) & 1

 controlQubit2 = (i >> (N - 1 - C2)) & 1

 targetQubit = (i >> (N - 1 - T)) & 1

 if targetQubit == 0

 antiTarget = 1

 elseif targetQubit == 1

 antiTarget = 0

 end

 if (controlQubit1 == 1) && (controlQubit2 == 1)

 mask = (2^N-1) $ (1 << (N-1-T))

 targetShift = (antiTarget << (N-1-T))

 index = ((i & mask) | targetShift)+1

 a_prime[i+1] = a[index]

 end

end

 63

One small but noteworthy difference in the implementation of our in-place

sequential simulator in Julia and the Java simulator from [29] is that our simulator is only

able to perform one single-qubit transformation for each line in a QDL file. The Java

simulator, however, is able to simulate multiple single-qubit gates in the same line. For

example, H-gates can be applied to all three qubits in a quantum register in the Java

simulator with the following transform:

Define Transform1

H H H

This transformation is possible using the full-matrix implementation and the

simulator simply generates the full 8 x 8 matrix, H ⊗H ⊗H . Using the in-place

simulation algorithm, however, this is not a valid transform. The three H-gates must be

applied sequentially, and the buffers swapped after each transformation. A valid QDL

command for the in-place simulator to perform the same operation is

Define Transform1

H I I

Define Transform2

I H I

Define Transform3

I I H

We refer to this behavior as “cascading” the single-qubit gate, since the same

transformation is performed to each qubit in sequential order. Parsing the QDL file to

apply the unitary transforms is done in constant time, so overall there is little to no

performance degradation involved with performing three transformations instead of one.

It is, however, a minor inconvenience to have to create a QDL file with three transforms

instead of a single line. We note that it is possible to create a parser that can accept

multiple single-qubit gates in a single line and simply automate the cascading behavior,

but we leave this for future work.

 64

We conducted thorough testing of our in-place implementation of these quantum

gates upon known quantum circuits in order to ensure that our implementation was valid.

After having established that our program was performing all simulations correctly, we

next compared the performance of the full-matrix implementation to that of the in-place,

matrix-free algorithm, with somewhat surprising results.

3. Comparison of Full-Matrix and In-Place Algorithms

In order to compare the performance of the full-matrix and in-place algorithms,

we developed two separate Julia scripts to easily test both implementations alongside one

another across various platforms. Both scripts simulate the same circuit and are executed

from the command line with a user-defined number of qubits, N, as a command line

argument. The simulated circuit simply places the entire N-qubit register into

superposition, using the transform H ⊗N , and then takes the entire register out of

superposition, once again using the H ⊗N transform. We will therefore refer to this test

circuit as the 2∗ H ⊗N() circuit.

The 2∗ H ⊗N() circuit is easily understood conceptually, but not particularly

useful since it is both very computation-heavy and it always returns the quantum register

back exactly into its original state. However, this makes it a quintessential circuit

to compare the full-matrix and in-place algorithms because it is trivial to check

for correctness, and the high amount of computation means that any performance

differences should be easily discernable. To check for correctness, the final classical state

is simply compared to the initial state of the register; if the final classical value is

different from the initial classical value, then the circuit has been implemented

incorrectly.

In order to simulate the 2∗ H ⊗N() circuit using the naïve, full-matrix algorithm,

we developed a function, recursive_kron(A, B, i), that makes use of Julia’s built-in

Kronecker product. The built-in Julia Kronecker product function is assumed to be

implemented optimally, or at least near-optimally, by Julia’s designers.

 65

The commented function is self-explanatory and the Julia code is contained

below:

function recursive_kron(A, B, i)

 #Function recursively performs (i-1) Kronecker products
 of A and B

 #Inputs: A and B, same dimension matrices

 # i, the number of desired Kronecker products

 #Base case. Return the Kronecker product of A and B

 if i == 2

 answer = kron(A, B)

 return answer

 #Recursive case.

 #Kronecker product of A and B, decrement by i.

 else

 B = kron(A, B)

 recursive_kron(A, B, i-1)

 end

end

The file naïve_hadamard.jl uses this recursive_kron function to generate the

unitary H ⊗N matrix and multiply it by the initial state vector a twice. The entire file is

contained within the supplemental code, and is called from the command prompt with the

following command (where N is the number of qubits in the simulated register):

julia naïve_hadamard.jl [N]

Next, we implemented the Julia script contained in the file inplace_hadamard.jl

(also in the supplemental code repository). This file uses the in-place algorithm from

Section 2 to simulate an identical 2∗ H ⊗N() circuit. After running this script, the final

state should again be identical to the initial state. The in-place version of this N-qubit

circuit is called using the following bash command:

julia inplace_hadamard.jl [N]

 66

We first compared these two algorithms on a laptop computer for various

quantum register sizes. Both time and memory performance can be measured easily using

Julia’s @time macro. The laptop used to conduct this test was a 2015 MacBook Air

running Mac OS-X El Capitan (Version 10.11.5). The processor onboard was a 1.4 GHz

Intel Dual Core i5 with 4GB memory. Simulation results for this computer are contained

in Table 6, which indicates the total time required to simulate the 2∗ H ⊗N() circuit for

both the full-matrix and in-place algorithms. Additionally, the total number of memory

allocations made during the simulation, as well as the combined size of all memory

allocated during simulation is displayed in the table.

Clearly, the in-place algorithm significantly outperforms the full-matrix algorithm

in terms of both time and total size of allocated memory. It was possible to simulate up to

14 qubits in the 2∗ H ⊗N() circuit on this computer using the full-matrix implementation.

2.66 GB of total memory allocation was made during the 14 qubit simulation. However,

simulation of 15 qubits was not possible on this computer using the full-matrix algorithm,

since more than double the amount of memory is required for each additional qubit.

When attempting a circuit of 15 or more qubits, the simulation ran for several minutes

before returning the following error:

LoadError: OutOfMemoryError()

The point at which a personal laptop will run out of memory during simulation

will of course vary widely from machine to machine. There are many variables that may

influence the maximum size of quantum system that can be simulated on a particular

computer including the processor, amount of memory, operating system, and other

programs running at the time of simulation. This large variance notwithstanding, the in-

place algorithm was able to simulate larger quantum systems notably more quickly and

efficiently than the naïve algorithm.

 67

Table 6 Naïve versus In-Place Simulation (1.4 GHz Intel Dual Core i5, 4 GB
Memory)

Quantum
Register
Size (N)

Naïve	Implementation	 In-Place	Implementation	
Time
(seconds)

Number of Memory
Allocations (Size)

Time
(seconds)

Number of Memory
Allocations (Size)

10 0.008 10 (680 KB) 0.057 34.76k (1.647 MB)
12 0.161 26 (170 MB) 0.067 34.76k (1.717 MB)
13 1.27 28 (682 MB) 0.068 34.76k (1.811 MB)
14 12.323 30 (2.66 GB) 0.07 34.76k (1.998 MB)
15 Error Error 0.075 34.76k (2.373 MB)
16 Error Error 0.104 34.76k (3.123 MB)

Next, we ran both scripts on a single AMD node of the Hamming high

performance computing (HPC) cluster. The AMD node was running a 12 core AMD

Opteron 6174 CPU at 2.2 GHz. Unsurprisingly the single AMD node was able to

simulate larger systems than the laptop for both the full-matrix and matrix-free simulation

algorithms. Table 7 displays the time and memory results of this test for the AMD

Opteron 6174 CPU. On the AMD node, out-of-memory errors were observed when using

the full-matrix algorithm for any register with more than 16 qubits. The in-place

algorithm, however, was able to simulate a 17 qubit circuit in a mere 0.216 seconds, with

a total of 4.623 MB in memory allocations. The maximum number of qubits in a

2∗ H ⊗N() circuit that the AMD node could simulate using the in-place algorithm was 33

qubits, which took 5,092 seconds with a total of 192 GB allocated.

Table 7 Naïve versus In-Place Simulation Performance (AMD Opteron 6174
CPU)

Quantum
Register
Size (N)

Naïve	Implementation	 In-Place	Implementation	
Time
(seconds)

Number of Memory
Allocations (Size) Time (seconds) Number of Memory

Allocations (Size)
16 48.8 32 (42.66 GB) 0.157 34.76k (3.123 MB)
17 Error Error 0.216 34.76k (4.623 MB)
20 Error Error 0.56 34.76k (25.63 MB)
25 Error Error 16.3 34.76k (769 MB)
26 Error Error 34.2 34.76k (1.502 GB)
33 Error Error 5,092 29.02k (192 GB)
34 Error Error Error Error

 68

Finally, we performed the same test using an Intel node on Hamming, which had

even better performance than the AMD node. More specifically, this node was running a

16-core Intel Xeon E-5 2698 v3 CPU with a clock rate of 2.30 GHz. Test results for the

Intel Xeon processor are included in Table 8. Using the Intel node, it was possible to

simulate a maximum register size of 17 qubits using the full-matrix algorithm. With the

in-place algorithm, however, an 18 qubit register was simulated in only 0.0747 seconds,

with 7.62 MB of total memory allocations. On the Intel node, the maximum quantum

register size possible using the in-place algorithm was 33 again qubits, which also

required the same 192 GB of total memory allocation as the AMD node. The Intel node,

however, performed the 33 qubit simulation of the 2∗ H ⊗N() circuit significantly faster

than the AMD node, at 1,349 seconds.

Table 8 Naïve versus In-Place Simulation (Intel Xeon E-5 2698 CPU)

Quantum
Register Size
(N)

Naïve	Implementation	 In-Place	Implementation	
Time
(seconds)

Number of Memory
Allocations (Size)

Time
(seconds)

Number of Memory
Allocations (Size)

16 19.051 34 (42.66 GB) 0.061 34.76k (3.123 MB)
17 76.752 36 (170.69 GB) 0.065 34.76k (4.623 MB)
18 Error Error 0.0747 34.76k (7.62 MB)
20 Error Error 0.127 34.76k (25.63 MB)
25 Error Error 3.62 34.76k (769 MB)
30 Error Error 136 29.02k (24.02 GB)
33 Error Error 1,349 29.02k (192 GB)
34 Error Error Error Error

Ultimately, the results across the board show a pronounced increase in both time

and memory efficiency of the in-place algorithm as opposed to generating the full

transformation matrix.

B. GOALS OF PARALLELIZING A QCS

Although the in-place simulation algorithm significantly outperforms the full-

matrix simulation algorithm in terms of both speed and memory, the total amount of

 69

memory available to a single processor is, of course, limited. The fact that each processor

has a finite amount of local memory available puts a hard limit on the maximum number

of qubits that can be simulated in a 2∗ H ⊗N() circuit on a single processor. In order to

increase circuit size beyond this limit without increasing the amount of memory available

on an individual processor, the simulation must be performed in parallel across multiple

processors. The in-place algorithm can be parallelized across multiple nodes by dividing

up the simulation and assigning each processor an equal portion of the simulation to store

in its local memory.

Parallelizing the simulation across multiple processors is not without cost,

however, since communication between processors is extremely expensive when

compared with computation on a single processor [17], [21], [22], [24]. This means that,

in addition to the time and memory costs that are present when performing simulation

sequentially on a single processor, communication costs must also be factored in when

performing simulation in parallel. It may in fact be faster to simulate a smaller quantum

system on a single processor than to distribute the quantum system across multiple

processors due to high communication costs. Therefore, it will be important to balance

the communication, computation, and memory costs when parallelizing the in-place

simulation algorithm across multiple processors.

C. IMPLEMENTING THE IN-PLACE ALGORITHM USING MPI

We implemented the matrix-free in-place algorithm across multiple nodes using a

master-slave node paradigm. Under the master-slave model, the master node executes all

computation and has unidirectional control over all slave nodes, which are used for

storage only and perform no computation of their own. When an MPI program to run the

simulation is executed across P processors, each processor is given a rank, R. These ranks

ordered from R = 0 to R = (P-1).

The master node is always defined as the processor with an MPI rank R = 0. We

assume that the number of processors, P, is a power of two in order to avoid a potentially

difficult and (for this project) irrelevant graph partitioning problem. According to the

MPI programming model, the master processor, as well as each of the slave processors,

 70

has exclusive access to its own local memory. Therefore, in order to access values on a

slave node, the master node must engage in bidirectional MPI communication with that

particular slave node.

In order to simulate a quantum register consisting of N qubits sequentially, a single

processor must maintain the entire state vector of length 2N in its own local memory. For

parallel execution, however, this state vector is distributed amongst the P processors equally

so that each one of the P processors is responsible for storing 2N/P amplitudes of the overall

global state vector a. Figure 12 displays an example of the master-slave model for a

simulation of N = 5 qubits, and P = 4 processors. Globally, there are a total of 25 = 32 states

in the vector a. Each processor is thus responsible for maintaining 25/4 = 8 states locally and

has no direct access to the states of any other processor. MPI communications between

processors in Figure 12 are shown as red arrows.

Figure 12 Master-Slave Paradigm Diagram.

The parallel version of the in-place QCS is contained in the simulator_p.jl file and

can be executed using the following shell command to simulate a user-defined QDL file:

mpirun -np [P] julia simulator_s.jl [QDLfilename]

Master	Node	(R	=	0)

1 2 0 4 5 3 7 6

Slave	1	(R	=	1)

1 2 0 4 5 3 7 6

Slave	3	(R	=	3)

1 2 0 4 5 3 7 6

Local	offset

Local	offset

1 2 0 4 5 3 7 6

Local	offset

Local	offset

Slave	2	(R	=	2)

 71

Upon execution of this command, P MPI processes are automatically started. The

master process (i.e., R = 0) begins parsing the indicated QDL file. All slave nodes begin

by initializing their storage arrays (local buffers a and a_prime) to all zeros and then

enter an infinite loop where they await commands from the master node.

After parsing the file and determining which transforms to apply, the master node

begins performing the transforms in-place just as in the sequential code. The main

difference between the sequential and parallel implementations is that the buffers a and

a_prime are now distributed amongst all the nodes. In order to read or write from a

certain index, k, of the global a buffer, the master node must first determine where k is

being stored. The master node can do this by using the integer division and modulo

operations.

In the example from Figure 12, each of 4 processors is locally responsible for the

storage of 8 elements of the global buffer a, which is of length 25 = 32. Each processor

has a total of L = 2N/P = 32/4 = 8 local memory locations. To access the kth element of

the global buffer a, the master first determines which slave node is responsible for storing

index k by integer dividing k by L. In Julia, this is done using the command div(k, L).

Next, the master node computes the offset within the local memory of the processor in

charge of element k by modulo dividing k by L. The Julia command to perform the

modulo operation is mod(k, l).

As a numerical example, if the master node is attempting to read from element 19

of the global buffer a, the master node first computes the rank of the processor by

computing R = div(19,8) = 2. The master node next computes that the offset within the

processor of rank 2 is mod(19,8) = 3. To read from this position, the master node can

now send the appropriate communication to the processor with rank 2.

For another example, consider the master node attempting to read from global

position 7. The master computes that the processor with rank R = div(7,8) = 0 is assigned

to this memory location, and that the local offset is at mod(7,8) = 7. Since this memory

address is located within the master node’s local memory, no MPI communication with

other nodes is required to read from or write to this location.

 72

For all transformations from a to a_prime as described in Section A.2, the master

node first computes the rank and offset of the index i to be swapped. If the memory

location is within the master’s local memory, the master node can swap the values locally

without any need for MPI communication. If, however, the index i is located within some

other node’s local memory, the master node must communicate with the associated slave

node using MPI according to some protocol that prevents deadlocks and/or race

conditions.

The communications protocol that we established for this simulator involved both

a data and control plane from the master to the slave nodes. The control plane tells the

slave which type of activity to perform. The activities that the slave nodes are permitted

to execute are READ, STORE, SWAP, and EXIT.

The EXIT function is self explanatory; slave nodes terminate their infinite loop

and print their stored array to an output text file labeled by rank.

If the master node needs to read from a slave node’s local memory, it will issue a

READ control message to the appropriate node. Once a particular slave node has received

one of these READ control messages, it will temporarily suspend its infinite loop until it

has received a data message from the master node. This data message will indicate the

particular offset that the master node is attempting to read from. The master node then

awaits a data message from the same slave node that will contain the value stored at that

particular offset. After sending this value as a data message, the slave node goes back

into its infinite loop, and the master node resumes computation.

 To perform a write operation to a slave’s local memory, the master node first

sends a STORE message to that particular slave node. The slave node will suspend its

infinite loop and await two data messages, the first indicating the offset within the local

a_prime buffer, and the second indicating the value to store at this offset. After receiving

both of these data messages, the slave resumes its infinite loop and the master resumes

computation.

When the master node has globally completed a transform from a to a_prime, it

will broadcast a SWAP command in the control plane to all slave nodes. Upon receiving a

 73

SWAP command in the control plane, all slave nodes will swap their local a and a_prime

buffers and the next transform will begin. The SWAP command is used in conjunction

with the STORE command so that all buffer swaps occur simultaneously, as coordinated

by the master node. This prevents race conditions resulting from values in a slave node’s

local memory being overwritten by premature buffer swaps.

This particular communication protocol for the master-slave model of parallel

QCS is contained in full within the supplemental code repository. The implementation

has been tested thoroughly for correctness on 2∗ H ⊗N() circuits of many different sizes

as well as the smaller circuits described in Chapter I. The results of these tests are

included in the next chapter. Overall, the master-slave paradigm increases the amount of

memory available to the master node for computation. However, each access of non-local

memory is very expensive, since the master node must undergo idle clock cycles while it

awaits responses from the slave nodes to its data and control messages. Therefore, while

the master-slave implementation is correct and does allow for larger circuits to be

simulated, it is certainly not an efficient way to conduct simulation.

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

IV. PERFORMANCE ANALYSIS AND OPTIMIZATION OF THE
PARALLEL QUANTUM COMPUTER SIMULATOR

A. ASCERTAINMENT OF CORRECTNESS OF THE PARALLEL
QUANTUM COMPUTER SIMULATOR

In general, algorithmic performance analysis is tantamount to worthless if the

algorithm is not guaranteed to always produce correct results. Additionally, it is

notoriously difficult to ensure correctness for programs being executed in parallel across

multiple processors due to deadlock and/or race conditions that may arise unpredictably.

These deadlocks or race conditions develop because in MPI programing it is impossible

to precisely control when a particular processor will execute a specific piece of code in

relation to the other processors running the same code. As a result, a parallel program

may execute correctly when run once, but may develop a deadlock or race condition

when run a second time due to processors accessing shared resources at slightly different

intervals between executions. We therefore ensured the correctness of both the parallel

and sequential implementations of the matrix-free Julia universal quantum simulator

before analyzing their time and memory performance characteristics.

We tested both versions of the simulator for correctness against the Java-based

quantum simulator from [29] beginning with several very small circuits and progressing

towards much larger and more complicated circuits. On the parallel QCS, each circuit

was simulated multiple times in order to ensure that it returned the same results every

execution, and that no deadlock or race conditions ever developed. We also tested the

parallel simulator using different hardware platforms as well as with various numbers of

total processors to ensure that it correctly performed the simulation in all cases. The QDL

files describing all of the test circuits in this section are contained in the Appendix. For

all test circuits, both the parallel and sequential in-place simulator computed the correct

simulation results every time.

We started by simulating a very simple entanglement circuit on both the parallel

and sequential Julia simulators. The entanglement circuit is a two-qubit circuit that begins

with both qubits in a classical state of |0〉, resulting in an initial state vector

 76

a = 1 0 0 0⎡⎣ ⎤⎦
T

. The circuit places the upper qubit into superposition using an H-

gate and then entangles both qubits with a CNOT1,0 gate. Both the parallel and sequential

Julia versions of the simulator correctly computed the state of the quantum system after

both transforms were applied as ′a =
1
2

0 0 1
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

T

, which was identical to the

results from the simulator from [29].

Next, we tested both simulators using the three-qubit teleportation circuit, which

begins in a classical state of |4〉. In this circuit, the middle qubit is placed into

superposition using an H-gate, and then the three qubits are entangled using a CNOT2,1

gate followed by a CNOT1,0 gate. Next, the upper qubit is placed into superposition using

another H-gate. Finally, the upper and middle qubits are measured. There are four

possible final state vectors for this circuit, depending on the results of the two pseudo-

random measurements; these four permutations are shown in Table 9. Both the sequential

and parallel Julia implementations return results that are identical to those from the Java

simulator in [29] for the teleportation circuit.

Table 9 Teleportation Circuit Final State Vectors

Qubit 0 After
Measurement

Qubit 1 After
Measurement

Final State Vector

|0〉 |0〉 ′a = 0 1 0 0 0 0 0 0⎡⎣ ⎤⎦
T

|0〉 |1〉 ′a = 0 0 1 0 0 0 0 0⎡⎣ ⎤⎦
T

|1〉 |0〉 ′a = 0 0 0 0 0 −1 0 0⎡⎣ ⎤⎦
T

|1〉 |1〉 ′a = 0 0 0 0 0 0 −1 0⎡⎣ ⎤⎦
T

The next circuits we tested were various three-qubit circuits designed to

individually test the implementations of the H-, S-, T-, X-, and Z-gates. The S-gate and T-

gate are simply special cases of the R(φ)-gate where φ = π/2 for the S-gate and φ = π/4 in

 77

the case of T-gate. Both gates will leave a basis state of |0〉 unchanged but an S-gate maps

a basis state of |1〉 to i⋅ |1〉 and a T-gate maps a basis state of |1〉 to a state of |1+ i〉
2

.

Each of these single-qubit gate test circuits begins in a classical state of |7〉 and

places all three of its qubits into and out of superposition using two of the respective

single-qubit gates per qubit, for a total of six transformations. The simulations can be

stopped after any particular transformation in order to compare the intermediate state

vectors and determine if the different versions of the simulator are producing the correct

results. Table 10 displays the correct intermediate state vector after the third

transformation for each single-qubit test circuit. Similarly, Table 11 displays the correct

final state vector after the sixth and final transformation for each of the single-qubit test

circuits. At all steps of each test circuit, both the sequential and parallel simulators

matched the correct results computed using the Java simulator from [29].

Table 10 Single-Qubit Gate Test Circuit State Vectors After Third Transform

QDL Circuit (from Appendix) Intermediate State Vector

H-gate Test ′a = 2
−3
2 1 −1 −1 1 −1 1 1 −1⎡⎣ ⎤⎦

T

S-gate Test ′a = 0 0 0 0 0 0 0 −i⎡⎣ ⎤⎦
T

T-gate Test ′a = 1
2

0 0 0 0 0 0 0 −1+ i()⎡
⎣

⎤
⎦
T

X-gate Test ′a = 1 0 0 0 0 0 0 0⎡⎣ ⎤⎦
T

Z-gate Test ′a = 0 0 0 0 0 0 0 1⎡⎣ ⎤⎦
T

 78

Table 11 Single-Qubit Gate Test Circuit Final State Vectors

QDL Circuit (from Appendix) Final State Vector

H-gate Test ′a = 0 0 0 0 0 0 0 1⎡⎣ ⎤⎦
T

S-gate Test ′a = 0 0 0 0 0 0 0 −1⎡⎣ ⎤⎦
T

T-gate Test ′a = 0 0 0 0 0 0 0 −i⎡⎣ ⎤⎦
T

X-gate Test ′a = 0 0 0 0 0 0 0 1⎡⎣ ⎤⎦
T

Z-gate Test ′a = 0 0 0 0 0 0 0 1⎡⎣ ⎤⎦
T

Having established that both the parallel and sequential Julia QCS were correctly

simulating these relatively small circuits, we tested both implementations using the much

larger nine-qubit Shor code described in Section I.C.3(3). We created two separate test

circuits in QDL to test the Shor code: one to detect and correct a single bit-flip error, and

a second to detect and correct a single phase shift error.

The circuit to test for a single bit-flip error begins with a nine-qubit register in a

classical state of |256〉. The qubits are then entangled as depicted in the circuit diagram

for the Shor code in Figure 10. A bit-flip is intentionally introduced by applying an X-

gate at transform 12. If the bit-flip is successfully detected and corrected, the final result

will be a classical state of |448〉. Both versions of the Julia simulator correctly detected

and corrected for the single bit-flip error in every simulation.

The circuit to test for a single phase shift error is identical to the bit-flip test

circuit except that instead of a bit-flip error, a phase shift error is artificially introduced at

the 12th transform using a Z-gate. In this circuit, if the phase shift is correctly detected

and reversed, the final result will be a classical state of |292〉. Again, both the parallel and

sequential Julia QCS implementations produced equivalent results to the Java simulator

from [29].

 79

Having successfully tested the sequential Julia version of the quantum simulator

across various quantum circuits, we can state with a high degree of certainty that the

simulation algorithms have been implemented correctly. We also tested the MPI

simulator using the same QDL circuits multiple times across different hardware platforms

while also varying the number of processors and are convinced of the correctness of our

parallel implementation of these same quantum simulation algorithms. Moreover, we

are convinced that neither deadlocks nor race conditions will develop in the course of

simulating any well-formed quantum circuit.

B. PERFORMANCE ANALYSIS OF THE PARALLEL QUANTUM
COMPUTER SIMULATOR

With the correctness of both Julia quantum simulators established, we next

compared the time and memory performance of the parallel QCS to the in-place

sequential QCS on all of the circuits from the previous section. Table 12 depicts the total

amount of time required to execute each of the circuits from the previous section on both

the sequential and MPI versions of the simulator. For all experiments in the remainder of

this thesis, the sequential simulator ran on a single Hamming node with an Intel Xeon ®

E-5 2698 CPU, and the parallel simulator ran on two or more of these same nodes.

Additionally, to ensure that each Hamming node was not running any other jobs during

our performance analysis tests, we executed each simulated circuit using the bash script

contained in the appendix. In this bash script, the #SBATCH --exclusive line

ensures that no other jobs run on the same nodes during our simulations.

The results in Table 12 show that for all tested circuits, the sequential simulator is

approximately 10 times faster than the parallel simulator. Since both simulators are

running the same in-place algorithm, there is clearly a performance degradation

associated with distributing the quantum simulation across multiple nodes for quantum

circuits of this size. However, it is common in the field of scientific computing to see a

decrease in performance for a fixed size problem when the problem size is below a

certain limit [21]. For all but so-called embarrassingly parallel problems (i.e., problems in

which there is little to no data dependency or need for communications between

processors), the problem size must increase beyond a certain limit in order to realize the

 80

benefit of distributing computation across multiple processors [21], [22]. This is

especially true in the case of a memory-bound, rather than computation-bound, problems

such as quantum computer simulation. Moreover, since adding additional nodes in the

master-slave simulation model only increases available memory and does not add any

computation power, such a performance decrease is to be expected.

Table 12 QCS Time Performance Analysis

QDL Circuit
(from

Appendix)

Sequential
Runtime (s)

Parallel
Runtime (s)

Parallel to Sequential
Runtime Ratio

Entanglement 0.0181 0.175 9.65
Teleportation 0.0181 0.238 13.13
H-gate Test 0.0182 0.154 8.47
S-gate Test 0.0165 0.149 8.97

T-gate Test 0.0180 0.146 8.11

X-gate Test 0.0166 0.141 8.45

Z-gate Test 0.0167 0.144 8.58

Bit-Flip
Circuit

0.0215 0.229 10.65

Phase Shift
Circuit

0.0220 0.231 10.52

The quantum circuits in Table 12 are all small enough that they can be simulated

on a single processor. However, once a quantum system is large enough that the two

state-vector buffers (i.e., the vectors a and a_prime from Section III.A.2) cannot be stored

within the memory of a single processor, the sequential QCS becomes unable to simulate

that system. The maximum number of qubits in a quantum circuit that can be simulated

on a single processor is entirely dependent on the amount of memory available to that

processor.

In Section III.A.3, we showed that on both the AMD Opteron™ 6174 and the

Intel Xeon ® E-5 2698 CPUs on the Hamming HPC cluster, the maximum number of

 81

qubits that could be simulated in a 2∗ H ⊗N() circuit was 33. Using the parallel QCS,

however, we were able to increase the simulation size beyond this limit, although the

simulations took significantly longer due to the added communications overhead. The

total memory requirements for quantum simulation doubles for every additional qubit in

the quantum register for the 2∗ H ⊗N() circuit. Therefore, we doubled the number of

processors for every additional qubit beyond 33 in order to have enough memory to

enable simulation.

Table 13 shows a comparison of the runtimes of the sequential simulator to the

parallel simulator on the 2∗ H ⊗N() circuit as the number of qubits in the quantum

register, N, increases. Although we have shown that we can increase the size of the

simulated quantum register by utilizing memory on additional slave nodes, there is a

significant performance slowdown due to the added communication overhead. For a

quantum register of 20 qubits, the parallel simulation is 476 times slower than the

sequential simulation. This ratio decreased, however, to 112 times slower for a 30 qubit

register and 85.2 times slower for a 33 qubit register. The parallel Julia QCS was also

able to simulate 2∗ H ⊗N() circuits with 34 and 35 qubit registers, but these simulations

took over 65 and 135 hours, respectively. Longer simulations are theoretically possible

but were not attempted due to resource constraints on the Hamming HPC cluster. The

reason for these long simulation times is that in the master-slave paradigm of the parallel

QCS, the slave nodes provide only additional memory and no added processing power.

Thus, the increased communication costs between the master and slave nodes slow down

computation greatly. These communication costs will be analyzed quantitatively in

Section C.

 82

Table 13 2∗ H ⊗N() Circuit Sequential and Parallel Simulation Times

Quantum Register
Size (N)

Sequential Runtime
(s)	

Parallel Runtime (s) /
Number of Processors

Parallel to Sequential
Runtime Ratio

20 0.127 60.5 / 2 processors 476
25 3.62 1,920 / 2 processors 530
30 136 15,300 / 2 processors 112
33 1,350 115,000 / 2 processors 85.2
34 Error 234,000 / 2 processors -
35 Error 489,000 / 4 processors -

Next, we studied the strong scaling of the parallel QCS by increasing the number

of processors available to simulate a fixed-size 2∗ H ⊗N() circuit. We compared the

execution times of the parallel QCS for three different 2∗ H ⊗N() circuits as the number

of MPI processes increased from 2 to 32. Table 14, Table 15, and Table 16 show the

experimental strong scaling results for a 10, 12, and 14-qubit circuit, respectively. Each

table also compares parallel runtimes to the sequential QCS runtime on the same circuit.

Table 14 Strong Scaling of the QCS on a 2∗ H ⊗10() Circuit

Processors Runtime (s) Runtime Ratio to Sequential QCS 	
1 (Sequential QCS) 0.0411 1

2 0.0613 1.49
4 0.091 2.21
8 0.132 3.21
16 0.214 5.20
32 0.952 23.16

 83

Table 15 Strong Scaling of the QCS on a 2∗ H ⊗12() Circuit

Processors Runtime (s)	 Runtime Ratio to Sequential QCS 	
1 (Sequential QCS) 0.0588 1

2 0.229 3.89
4 0.408 6.93
8 0.439 7.46
16 0.578 9.83
32 0.936 15.91

Table 16 Strong Scaling of the QCS on a 2∗ H ⊗14() Circuit

Processors Runtime (s)	 Runtime Ratio to Sequential QCS 	
1 (Sequential QCS) 0.0637 1

2 0.715 11.2
4 1.38 21.7
8 1.71 26.8
16 2.20 34.5
32 3.06 48.0

Figure 13 graphically depicts the ratio of each simulation’s runtime to the

sequential simulator’s runtime for the three different 2∗ H ⊗N() circuits as the number of

processors increases. Increasing the number of MPI processes involved in the simulation

increases the amount of global memory available and thus increases the maximum size of

the quantum system that can be simulated. This is clearly not without cost, however, as

the increased communications overhead necessarily slows down the simulation

significantly. For example, while 32 processors operating in parallel have 32 times the

global memory as a single processor, it takes 48.0 times longer to simulate a 14 qubit

2∗ H ⊗N() circuit, as shown in Table 16.

 84

Figure 13 Runtime Ratio Compared to Sequential QCS versus Number of MPI
Processes for Various 2∗ H ⊗N() Circuits

We next studied the weak scaling of the parallel QCS by doubling the number of

processors available each time we doubled the size of the problem. This is equivalent to

doubling the number of MPI processes for each additional qubit in the quantum system.

We began this experiment with a 2∗ H ⊗N() circuit with a baseline of N = 10 and 2 MPI

processes. We then doubled the number of processors for each qubit above the baseline

of 10 in the circuit. The results are shown in Table 17, and again indicate the significance

of the increased communications cost due to adding more MPI processes. This matches

the expected weak scaling results, since adding additional processes in the master-slave

QCS model only increases global memory and does not improve computation ability.

Figure 14 graphically displays the runtime ratio compared to the dual processor baseline

for this experiment.

0	

10	

20	

30	

40	

50	

60	

1	 2	 4	 8	 16	 32	

Ru
n$

m
e	
Ra

$o
	(S
eq

ue
n$

al
	S
im

ul
a$

on
	=
	1
.0
)	

Number	of	Processors	

N=10	

N=12	

N=14	

 85

Table 17 Weak Scaling of the QCS

Processors Quantum Register Size (N) Runtime (s)	 Runtime Ratio to Baseline	
2 (Baseline) 10 0.0534 1

4 11 0.180 3.37
8 12 0.410 7.68
16 13 0.952 17.8
32 14 3.06 57.3

Figure 14 Runtime Ratio to Baseline versus Number of MPI Processes For
Various 2∗ H ⊗N() Circuits

Ultimately, adding additional MPI processes increases the maximum possible size

of quantum register that our QCS can simulate. However, adding MPI processes is very

costly because of the increased communications overhead. The sequential in-place Julia

simulator is therefore optimal when compared to our distributed memory simulator for all

quantum systems of 33 qubits and under (on the Hamming HPC). For systems larger than

33 qubits, however, the distributed memory parallel simulator must be used, despite the

poorer performance. Performance of the distributed memory model may be improved

substantially if all nodes are able to perform computation, as opposed to the master-slave

0	

10	

20	

30	

40	

50	

60	

70	

2	 4	 8	 16	 32	

Ra
#o

	o
f	R

un
#m

e	
to
	2
-P
ro
ce
ss
or
	R
un

#m
e	

Number	of	Processors	

 86

model where only one node is performing computation. However, choreographing

computation amongst all nodes is a non-trivial problem that we leave for future work.

C. COMMUNICATION COSTS IN THE PARALLEL QUANTUM
COMPUTER SIMULATOR

The data from Table 12 and Table 13 show that the sequential version of the Julia

quantum simulator clearly outperforms the parallel version for smaller circuits. As

previously stated, the reason for this decrease in performance is the addition of

communications overhead in the parallel simulator. In the sequential simulator, the entire

simulation exists in the local memory of a single processor and no external

communications are required. Therefore, all memory allocations can be done locally,

which is significantly faster than having to communicate with another processor. Table

18 depicts the total number of memory allocations made as well as the total number of

bytes allocated during the simulation of each circuit on the sequential QCS.

In the parallel simulator, however, the state space of the simulation is distributed

evenly across multiple nodes as described in Section III.C. Prior to performing any

computational step, the master node in the parallel simulator must first determine if all of

the amplitudes involved in that computational step are stored in local memory. If all of

these amplitudes are indeed stored in local memory, then the new amplitude can be

computed and stored locally without any additional communications overhead. However,

if any of the amplitudes involved in the computation are not in local memory, the master

node must wait for the communications protocol discussed in Section III.C to complete

before performing the computation. Depending on the type of transformation being

performed, this may result in several READ or STORE calls to one or more slave nodes

for each step of computation. At the end of each transformation, the master node must

also broadcast a SWAP call to each of the slave nodes used in that computation in order to

successfully choreograph the global buffer swap.

 87

Table 18 Sequential QCS Memory Allocations

QDL Circuit (from Appendix) Total Memory Allocations (Total Bytes Allocated)

Entanglement 11.70K allocations (544 KB)

Teleportation 12.07K allocations (554 KB)

H-gate Test 12.13K allocations (555 KB)

S-gate Test 11.48K allocations (527 KB)

T-gate Test 12.08K allocations (554 KB)

X-gate Test 11.38K allocations (524 KB)

Z-gate Test 11.39K allocations (525 KB)

Bit-Flip Circuit 40.60K allocations (1.2 MB)

Phase Shift Circuit 40.86K allocations (1.2 MB)

From the master node’s perspective, each READ call results in three total MPI

messages being sent and received. First, the master node sends a control message to the

appropriate slave node consisting of a single Julia Int64 (8 bytes of information). The

master node then sends a data message with another 8-byte Int64 to indicate the offset

that is being read from. The master node then receives a single message from that node

containing two Float64 values (8 bytes each), corresponding to the real and imaginary

components of the complex amplitude being read. Therefore, each READ call from the

master node’s perspective results in a total of 32 bytes being sent and received using MPI

communication.

Similarly, a STORE call involves a single control message consisting of 8 bytes.

The control message is also followed by 8 byte offset message and a 16 byte value

message. Each STORE call therefore also results in a total communications payload of 32

bytes. Finally, each SWAP call consists of a single Int64 being broadcast to every MPI

process other than the master process. Thus, a SWAP results in the transfer of 8 ⋅ P −1()

bytes, where P is the total number of MPI processes.

Table 19 depicts the total number of READ, STORE, and SWAP calls (from the

master node’s perspective) required to simulate each one of the test circuits described in

the previous section. The total size of all data communicated between MPI processes

 88

during each simulation has also been calculated and is shown in Table 19. Finally, the

total number of bytes sent and received is divided by the total simulation time from Table

12 in order to determine an average communication bandwidth throughout each

simulation. Note that this communication bandwidth only accounts for the data payload

encapsulated inside each MPI message, and not the size of the entire message itself.

Table 19 Parallel QCS Communication Cost Analysis

QDL Circuit
(from Appendix)

Total Number of
READs / STOREs /

SWAPs

Data Transmitted Average
Communication

Bandwidth

Entanglement 6 / 4 / 2 322 B 1.84 KB/s

Teleportation 44 / 23 / 7 2.16 KB 9.06 KB/s

H-gate Test 48 / 25 / 7 2.35 KB 15.2 KB/s

S-gate Test 24 / 25 / 7 1.58 KB 10.7 KB/s

T-gate Test 24 / 25 / 7 1.58 KB 10.8 KB/s

X-gate Test 24 / 25 / 7 1.58 KB 11.2 KB/s

Z-gate Test 24 / 25 / 7 1.58 KB 11.0 KB/s

Bit-Flip Circuit 6,656 / 5121 / 28 377 MB 1.65 MB/s

Phase Shift
Circuit

6,656 / 5121 / 28 377 MB 1.63 MB/s

As Table 19 shows, the number of communications required for a simulation

grows with the size and complexity of the circuit being simulated. Therefore, using the

master-slave paradigm to implement a quantum simulator in MPI will result in higher

overhead for larger circuits. This means that the performance loss in the parallel

implementation of the Julia QCS, when compared to the sequential QCS, will increase as

the size of the quantum circuit increases.

The communications cost also increases as the number of MPI processes involved

in the simulation grows. This can be seen by examining the strong scaling of the

communication costs—that is, observing the increase in MPI communications for a fixed

problem size as the number of processors increases. To perform this experiment, we

 89

again used the 2∗ H ⊗N() circuit for N = 10, N = 12, and N = 14. For each fixed

problem size, we doubled the number of MPI processes incrementally from 2 to 32

processes, and tabulated the results in Table 20, Table 21, and Table 22. Clearly, as the

number of MPI processes increases, more communications to and from the master node

will be required, resulting in the slower simulation times previously seen in Section B.

Table 20 Communications Cost Strong Scaling on a 2∗ H ⊗10() Circuit

Processors READs / STOREs /
SWAPs

Total Transmission Size
(MB)

Average Communication
Bandwidth (MB/s)

2 20,480 / 10,241 / 21
0.983 16.0

4 30,720 / 15,360 / 63 2.76 30.4
8 35,840 / 17,920 / 147

6.24 47.2

16 38,400 / 19,201 / 315

13.1 61.4
32 39,680 / 19,841 / 651

26.9 28.3

Table 21 Communications Cost Strong Scaling on a 2∗ H ⊗12() Circuit

Processors READs / STOREs /
SWAPs

Total Transmission Size
(MB)

Average Communication
Bandwidth (MB/s)

2 98,304 / 49,153 / 25
4.71 20.6

4 147,456 / 73,729 / 75 14.5 34.4
8 172,032 / 86,017 / 175

34.1 77.6

16 184,320 / 92,161 / 375

73.4 127
32 190,464 / 95,233 / 775

151.9 162

Table 22 Communications Cost Strong Scaling on a 2∗ H ⊗14() Circuit

Processors READs / STOREs /
SWAPs

Total Transmission Size
(MB)

Average Communication
Bandwidth (MB/s)

2 458,725 / 229,377 / 29
22.0 30.8

4 688,128 / 344,064 / 87 72.9 52.9
8 802,816 / 401,409 / 203

178 104

16 860,160 / 430,081 / 435

390 177
32 888,832 / 444,417 / 899

815 266

 90

Figure 15 graphically depicts the total amount of data transmitted to and from the

master node for the three different 2∗ H ⊗N() circuits as the number of MPI processes is

incrementally doubled.

Figure 15 Total Data Transmitted versus Number of MPI Processes for
Various 2∗ H ⊗N() Circuits

Next, we explored the weak scaling of the communications overhead in our

distributed memory QCS using the 2∗ H ⊗N() circuit. Again, we began with a baseline of

N = 10 and 2 MPI processes. For each additional qubit, we doubled the number of

processors and recorded the results in Table 23. As expected, the total size of data

transmitted and received by the master node via MPI communications goes up

substantially as both the size of the quantum system and the number of processors

increase. The total amount of data sent and received by the master node is plotted against

the number of MPI processes for this experiment in Figure 16.

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

2	 4	 8	 16	 32	

M
eg
ab

yt
es
	o
f	C

om
m
un

ic
a2

on
	

Number	of	Processors	

N=10	

N=	12	

N=14	

 91

Table 23 Communications Cost Weak Scaling of the QCS

Processors Quantum
Register Size

(N)

READs / STOREs /
SWAPs	

Total
Transmission

Size (MB)

Average
Communication

Bandwidth (MB/s)	
2 (Baseline) 10 20,480 / 10240 / 21 0.983 18.4

4 11 67,584 / 33,793 / 69 3.24 17.9
8 12 172,032 / 86,017 / 175 8.26 20.12
16 13 339,360 / 199,681 / 405 17.3 18.11
32 14 888,832 / 444,417 / 899 42.7 13.94

Figure 16 Total Data Transmitted versus Number of MPI Processes for
Various 2∗ H ⊗N() Circuits

Ultimately, the distributed memory version of our QCS has been implemented

correctly and is free from deadlock and race conditions. It harnesses the added memory

associated with extra processors in order to simulate larger quantum systems that were

impossible to simulate using the sequential QCS. However, distributing the quantum

simulation across multiple nodes is not without cost, and the added communications

overhead can be extremely expensive in some cases. While the master-slave model of

parallel QCS is reliable in that it produces correct results, it does not scale well due to the

unavoidable and exponentially increasing communications costs.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

2	 4	 8	 16	 32	

To
ta
l	D

at
a	
Se
nt
/R
ec
ei
ve
d	
(M

B)
	

Number	of	Processors	

 92

D. OPTIMIZING THE PARALLEL QUANTUM COMPUTER SIMULATOR

Several optimizations were included in the MPI version of the QCS that improved

the performance of the distributed memory simulator. We also take note of some

opportunities for further optimizations that we leave for future work.

1. Optimizations Included in our Simulator

We included two main optimizations in the final version of our parallel QCS.

Each of these optimizations improved performance by a small constant factor. In the case

of large simulations that take several days or longer, however, these optimizations are

quite valuable.

 The first optimization we used was to include the @inbounds Julia macro into

all for-loops. Julia by default incorporates array bounds checking within all expressions

[25]. Thus, when iterating through each of the 2N amplitudes of an N-qubit quantum

register, the Julia just-in-time compiler must check at each iteration whether the array

index is located properly inside the array. Adding the @inbounds macro before each

for-loop eliminates array bounds checking within that loop [25]. We utilized the

@inbounds Julia macro only after establishing that our simulator was working correctly

to ensure that all array indexes in our scripts were indeed located within the bounds of the

arrays. We incorporated the @inbounds macro into both the sequential and parallel

versions of the simulator, and realized approximately a 3% speedup in both cases.

The next optimization we included was to preallocate the a_prime buffer at the

beginning of the script, as opposed to creating a new a_prime buffer for each

transformation. Initially, we had only allocated the a buffer, and for each unitary

transformation performed, we allocated a new a_prime buffer consisting of all zeros. At

the conclusion of the transformation, the pointer to the a buffer was swapped to point to

the a_prime buffer, and the old a buffer was discarded. Reallocating a buffer of zeros of

length 2N for each transform then discarding it at the end of the transform is certainly not

without cost. We improved the performance of both the sequential and parallel simulators

by declaring the a_prime buffer at the same time as the a buffer, near the beginning of

the script. At the end of each of transformation, the buffer pointers are simply swapped,

 93

and the values in the old a buffer can be overwritten in the next transform without

reallocation. In the sequential simulator, this resulted in roughly a 4% speedup, but in the

parallel simulator it resulted in a variable but always less than 1% speedup. The reason

for the smaller performance increase is that in the parallel QCS, the percentage of

computational steps in which the local a and a_prime buffers are used is much smaller.

The percentage of calculations that use the master node’s local buffers also varies widely

depending on the problem size and number of processors.

Overall, we were able to obtain a small but noticeable speedup for both the

sequential and parallel simulators by incorporating the @inbounds Julia macro and

preallocating our working buffers.

2. Potential Future Optimizations

The most obvious optimization, which we leave for future work, is to depart from

the master-slave model and enable computation on all nodes. This would alleviate the

communications bottleneck that arises as the master awaits communications from slave

nodes before being able to perform computation. First, each node can be responsible for

parsing the QDL file separately, since this is done in constant time. Each MPI process

can then go through every transform independently and determine if one of the global

complex amplitudes that it has stored locally is involved in that transformation. If so, that

processor can determine which other processors have amplitudes involved in that

transformation (in the same manner that our master node determined this), and those

processors can engage in pairwise communication. We were unable to devise a working

communications protocol to enable computation on all nodes that was free of deadlock

and race conditions. Moreover, since the problem of quantum computer simulation is

memory bound and not computation bound, it is not clear how much, if any, speedup this

would provide.

Finally, we examined the number of communications that took place during

simulation in our distributed memory QCS in order to attempt to determine if any of the

communications were unnecessary. For example, consider the number of

communications that take place during each transformation of the of 2∗ H ⊗N() circuit.

 94

In our Julia parallel QCS, the number of READ, STORE, and SWAP calls is constant at

each step of the transformation. For each transformation, there are 2N READ calls, 2N-1

STORE calls, and 1 SWAP call. Therefore, for each of the 2 ⋅N steps, there are a total of

2N + 2N−1 +1() combined calls to READ, STORE, and SWAP.

The number of global complex amplitudes updated per transformation is not

constant, however. Regardless of the size of the quantum register, the circuit begins in a

classical state with only one nonzero complex amplitude in the global a vector.

Specifically, this amplitude will be equal to 1+ 0 ⋅ i located at the initial index k that

corresponds to the decimal representation of initial state of the quantum register, φ0. In

the 2∗ H ⊗N() circuit, the number of nonzero global complex amplitudes always exactly

doubles every transformation, until the Nth transformation, after which all global complex

amplitudes are nonzero. At this point, the quantum system is in a perfectly balanced

superposition between all of its constituent basis states. For the remainder of the

transformations, the number of nonzero complex amplitudes is halved for each

transformation until there remains exactly one nonzero complex amplitude. If the circuit

has been correctly implemented, this nonzero complex amplitude will be an amplitude of

1+ 0 ⋅ i located at the same index, k, at which it began the circuit. Figure 17 displays the

total number of combined READ, STORE, and SWAP calls as well as the total number of

amplitudes updated for each transformation in a 2∗ H ⊗N() circuit where N = 8.

The number of communications is constant every step, although for many of the

steps only a small fraction of the complex amplitudes in the global state vector a are

being updated. This raises the question of whether or not some of the MPI

communications that are taking place are unnecessary. It is unclear whether or not some

of these MPI communications can be eliminated without loss of generality in the context

of a distributed memory universal quantum simulator. We leave further experimentation

into eliminating potentially extraneous MPI communications to further work.

 95

Figure 17 Total MPI Communications and Complex Amplitudes Updated per
Step of the 2∗ H ⊗8() Circuit

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	

N
um

be
r	o

f	C
om

m
un

ic
a/

on
s	o

r	S
ta
te
s	U

pd
at
ed

	

Transforma/on	Number	

Communica4ons	Called	

Complex	Amplitudes	Updated	

 96

THIS PAGE INTENTIONALLY LEFT BLANK

 97

V. CONCLUSION AND FUTURE WORK

A. CONCLUSION

This thesis has produced many important insights and conclusions in both the

field of quantum computer simulation as well as parallel scientific computing. We first

implemented a sequential matrix-free universal quantum computer simulator using the

Julia programming language. For an N-qubit quantum register, the matrix-free algorithm

allowed us to operate directly on two a 2N x 1 column vector instead of having to store a

2N x 2N
 unitary matrix for each transformation.

Using the matrix-free, in-place algorithm greatly improved the performance of the

sequential QCS over the full-matrix simulation algorithm from [29]. More specifically,

the full-matrix simulation algorithm took 76.7 seconds to simulate a 17-qubit quantum

circuit on an Intel Xeon E-5 2698 CPU. The sequential in-place implementation took

only 0.065 seconds to run the same simulation on the same hardware, for a speedup of

1,180%. The sequential in-place algorithm also increased the number of qubits we could

simulate on the same Intel processor from 17 to 33—an increase in the size of the

problem by a factor of 216.

This thesis also showed that quantum computer simulation is memory bound, not

computation bound. We alleviated the memory bottleneck by parallelizing our sequential

in-place algorithm using a distributed memory approach, although this came at a large

performance cost due to the addition of communications overhead. We correctly

implemented a method of dividing up the two 2N x 1 column vectors and distributing

their states equally amongst multiple processors. We also showed how to implement

unitary transforms with the states divided up and distributed across their different nodes.

Comparison of our parallel and sequential simulators revealed that for circuits

small enough to be stored in the memory of a single processor, it is faster to perform

quantum computer simulation sequentially rather than in parallel due to high

communication costs. However, the distributed memory parallel simulator must be used

to simulate any circuits that are too large to be stored on a single processor.

 98

This thesis also produced important academic and educational benefits in the form

of open-source sequential and parallel quantum computer simulators. We also developed

other scripts designed to study various aspects of quantum computer simulation and

parallel scalability, including the parallel and sequential versions of the 2∗ H ⊗N()

circuit. These scripts are all available through the Dudley Knox Library, and can be

studied or improved upon in future work at the Naval Postgraduate School.

B. FUTURE WORK

There are plenty of opportunities for improvement and future work from this

thesis. First of all, there are several opportunities for enhancement of the existing parallel

quantum simulator. The master-slave node model could potentially be abandoned in favor

of all nodes performing choreographed computation. Additionally, eliminating

unnecessary communication between nodes can theoretically alleviate some of the

communications overhead. There has also been a lot of recent work done in the field of

data locality optimization; some form of data locality optimization could perhaps be

applied to the method of storing particular quantum states in order to further minimize

communication costs.

Finally, different parallel architectures could potentially be exploited in order to

improve parallel quantum simulation performance. We do not believe that the “single

program, multiple data” parallelization technique, such as Intel’s ispc compiler, will

provide much useful performance benefit, since quantum computer simulation is memory

bound and not computation bound. However, we have not experimented at all with the

single program, multiple data paradigm in terms of quantum computer simulation and

leave this for future work.

The computations that are performed in the course of quantum computer

simulation are quite intensive in terms of the number of floating point operations that are

performed. Therefore, we believe that a vector architecture, such as a graphics processing

unit, may provide useful performance benefits towards quantum computer simulation.

We leave for future work the possibility of translating our existing simulation algorithms

to run on vector architecture hardware, perhaps using the open-source OpenCL

framework or NVIDIA’s CUDA compiler.

 99

APPENDIX. SAMPLE QDL CIRCUITS.

(1) Entanglement Circuit

Define N 2
Define Phi0
0 0
Define Transform1
H I
Define Transform2
Control Target

(2) Teleportation Circuit

Define N 3
Define Phi0
1 0 0
Define Transform1
I H I
Define Transform2
I Control Target
Define Transform3
Control Target I
Define Transform4
H I I
Define Transform5
M I I
Define Transform6
I M I

(3) 3-Qubit H-Gate Test Circuit

Define N 3
Define Phi0
1 1 1
Define Transform1
H I I
Define Transform2
I H I
Define Transform3
I I H
Define Transform4
I I H
Define Transform6
I H I
Define Transform6

 100

H I I

(4) 3-Qubit X-Gate Test Circuit

Define N 3
Define Phi0
1 1 1
Define Transform1
X I I
Define Transform2
I X I
Define Transform3
I I X
Define Transform4
I I X
Define Transform6
I X I
Define Transform6
X I I

(5) 3-Qubit S-Gate Test Circuit

Define N 3
Define Phi0
1 1 1
Define Transform1
S I I
Define Transform2
I S I
Define Transform3
I I S
Define Transform4
I I S
Define Transform5
I S I
Define Transform6
S I I

(6) 3-Qubit Z-Gate Test Circuit

Define N 3
Define Phi0
1 1 1
Define Transform1
Z I I
Define Transform2
I Z I

 101

Define Transform3
I I Z
Define Transform4
I I Z
Define Transform5
I Z I
Define Transform6
Z I I

(7) 3-Qubit T-Gate Test Circuit

Define N 3
Define Phi0
1 1 1
Define Transform1
T I I
Define Transform2
I T I
Define Transform3
I I T
Define Transform4
I I T
Define Transform5
I T I
Define Transform6
T I I

(8) Shor Code Bit-Flip Test Circuit

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I I I I I I I
Define Transform4
I I I H I I I I I
Define Transform5
I I I I I I H I I
Define Transform6
Control Target I I I I I I I
Define Transform7
I I I Control Target I I I I
Define Transform8
I I I I I I Control Target I
Define Transform9

 102

Control I Target I I I I I I
Define Transform10
I I I Control I Target I I I
Define Transform11
I I I I I I Control I Target
Define Transform12
X I I I I I I I I
Define Transform13
Control I Target I I I I I I
Define Transform14
I I I Control I Target I I I
Define Transform15
I I I I I I Control I Target
Define Transform16
Control Target I I I I I I I
Define Transform17
I I I Control Target I I I I
Define Transform18
I I I I I I Control Target I
Define Transform19
UT1 UT2 UT3 I I I I I I
Define Transform20
I I I UT1 UT2 UT3 I I I
Define Transform21
I I I I I I UT1 UT2 UT3
Define Transform22
H I I I I I I I I
Define Transform23
I I I H I I I I I
Define Transform24
I I I I I I H I I
Define Transform25
Control I I I I I Target I I
Define Transform26
Control I I Target I I I I I
Define Transform27
UT1 I I UT2 I I UT3 I I

(9) Shor Code Phase Shift Test Circuit

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I I I I I I I
Define Transform4
I I I H I I I I I
Define Transform5

 103

I I I I I I H I I
Define Transform6
Control Target I I I I I I I
Define Transform7
I I I Control Target I I I I
Define Transform8
I I I I I I Control Target I
Define Transform9
Control I Target I I I I I I
Define Transform10
I I I Control I Target I I I
Define Transform11
I I I I I I Control I Target
Define Transform12
Z I I I I I I I I
Define Transform13
Control I Target I I I I I I
Define Transform14
I I I Control I Target I I I
Define Transform15
I I I I I I Control I Target
Define Transform16
Control Target I I I I I I I
Define Transform17
I I I Control Target I I I I
Define Transform18
I I I I I I Control Target I
Define Transform19
UT1 UT2 UT3 I I I I I I
Define Transform20
I I I UT1 UT2 UT3 I I I
Define Transform21
I I I I I I UT1 UT2 UT3
Define Transform22
H I I I I I I I I
Define Transform23
I I I H I I I I I
Define Transform24
I I I I I I H I I
Define Transform25
Control I I I I I Target I I
Define Transform26
Control I I Target I I I I I
Define Transform27
UT1 I I UT2 I I UT3 I I

 104

(10) Slurm Workload Manager Sample Bash Script

#!/bin/bash
#SBATCH --job-name=jobname
#SBATCH --output=bashout/filename.out
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --time=36:00:01
SBATCH --partition=beards
#SBATCH --exclusive
#SBATCH --constraint=intel

Output some useful job information. #

echo --
if [“${SLURM_NNODES}” -eq “1”]
then
 echo ‘CPUS(xNODES): ‘${SLURM_JOB_CPUS_PER_NODE}’(x1)’
else
 echo ‘CPUS(xNODES): ‘${SLURM_JOB_CPUS_PER_NODE}
fi
echo ‘Job is running on nodes:’
echo $SLURM_JOB_NODELIST
echo --
echo SLURM: submission node: $SLURM_SUBMIT_HOST
echo SLURM: partition: $SLURM_JOB_PARTITION
echo SLURM: submission directory: $SLURM_SUBMIT_DIR
echo SLURM: job identifier: $SLURM_JOBID
echo SLURM: job name: $SLURM_JOB_NAME
echo SLURM: current home directory: $HOME
echo SLURM: PATH: $PATH
echo --

source /etc/profile
module use /usr/share/Modules/modulefiles
module load compile/gcc/5.2.0
module load mpi/openmpi/1.10.2
module load julia/0.4.5

cd $SLURM_SUBMIT_DIR

mpirun -np 2 julia simulator_p.jl circuits/bitflip

 105

SUPPLEMENTAL

The supplemental tarball file contains five Julia 0.4.5 scripts that were used to

conduct the various experiments performed in this thesis. Additionally, a bash script is

contained which is designed to run these Julia scripts on HPC cluster using the Slurm

Workload Manager. Various quantum circuit files, in the QDL format, are also contained

within the circuits/ subdirectory. Finally, a readme file (entitled simply README) is

included that contains instructions for how to execute all of the scripts contained in the

tarball file.

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

LIST OF REFERENCES

[1] N. Yanofsky and M. Mannucci. Quantum Computing for Computer Scientists.
New York: Cambridge University Press, 2008.

[2] C. Williams. Explorations in Quantum Computing. 2nd Edition. New York:
Springer Publishing, 2011.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, no. 5,
pp. 1484–1509, 1997.

[4] T. Moses. “Quantum computing and cryptography: their impact on cryptographic
practice,” Entrust Inc., Dallas, TX, Jan. 2009.

[5] S. Aaronson. “The limits of quantum computers,” Scientific American, vol. 298,
no. 3, pp. 62–69, March2008.

[6] T. Metodi, A. Faruque, and F. Chong. Quantum Computing for Computer
Architects. San Rafael, CA: Morgan & Claypool, 2006.

[7] S. Anthony. (2014) “IBM cracks open a new era of computing with brain-like
chip: 4096 cores, 1 million neurons, 5.4 billion transistors.” [Online]. Available:
http://www.research.ibm.com/articles/brain-chip.shtml.

[8] K. De Raedt, et al. “Massively parallel quantum computer simulator.” Computer
Physics Communications, vol. 176, no. 2, pp. 121–136, 2007.

[9] D. Deutsch. “Quantum theory, the Church-Turing thesis and the universal
quantum computer,” in Proc. of the Royal Society of London A: Mathematical,
Physical, and Engineering Sciences, vol. 400, no. 1818, pp. 97–117, Aug. 1985.

[10] D. Deutsch and R. Jozsa. “Rapid solution of problems by quantum computation,”
in Proc. of the Royal Society of London A: Mathematical, Physical, and
Engineering Sciences, vol. 439, no. 1907, pp. 553–558, Aug. 1992.

[11] L. Grover, “A fast quantum mechanical algorithm for database search,” in Proc.
of the 28thAnnual ACM Symposium on Theory of Computing, pp. 212–219, 1996.

[12] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information.
New York: Cambridge University, 2000.

[13] L. Vandersypen, et al. “Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance.” Nature, vol. 414,
 no. 6866, pp. 883–887, 2001.

 108

[14] E. Martin-Lopez, et al. “Experimental realization of Shor’s quantum factoring
algorithm using qubit recycling.” Nature Photonics, vol. 6, no. 11, pp. 773–776,
2012.

[15] D. MacKay. Information Theory, Inference, and Learning Algorithms. New York:
Cambridge University Press, 2003.

[16] P. Shor, “Scheme for reducing decoherence in quantum computer memory,”
Physical Review A, vol. 52, no. 4, Oct. 1995.

[17] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Fifth Edition. Waltham, MA: Morgan Kaufmann. 2012.

[18] “Intel 14 nm technology,” Intel. [Online]. Available:
http://www.intel.com/content/www/us/en/silicon-innovations/intel-14nm-
technology.html. [Accessed: 06-Jun-2016].

[19] M. Bohr. “A 30 year retrospective on Dennard’s MOSFET scaling paper.” IEEE
Solid-State Circuits Newsletter, vol. 12, no. 1, pp. 11–13, 2007.

[20] L. Armasu, “Samsung’s new $14 billion chip plant to manufacture DRAM,
processors in 2017,” Tom’s Hardware, Aug-2015. [Online]. Available:
http://www.tomshardware.com/news/samsung-14-billion-chip-plant,29058.html.
[Accessed: 06-May-2016].

[21] T. Rauber and G. Rünger. Parallel Programming: For Multicore and Cluster
Systems. Berlin: Springer-Verlag, 2010.

[22] D. Culler, et al. Parallel Computer Architecture: A Hardware/Software
Approach. Burlington, Massachusetts: Morgan Kaufman Publishers. 1999.

[23] G. Torres, “Inside Pentium 4 architecture,” Hardware Secrets, 2005. [Online].
Available: http://www.hardwaresecrets.com/inside-pentium-4-architecture/2.
[Accessed: 06-Jun-2016].

[24] “Open MPI: open source high performance computing,” Open MPI: Open Source
High Performance Computing. [Online]. Available: http://www.open-mpi.org/.
[Accessed: 06-Apr-2016].

[25] “The Julia language,” The Julia Language. [Online]. Available:
http://julialang.org/. [Accessed: 06-Mar-2016].

[26] M. Hill and M. Marty “Amdahl’s law in the multicore era,” 2008 IEEE 14th
International Symposium on High Performance Computer Architecture, 2008.

 109

[27] K. Moreland and R. Oldfield, “Formal metrics for large-scale parallel
performance,” Lecture Notes in Computer Science High Performance Computing,
pp. 488–496, 2015

[28] J. L. Gustafson, “Reevaluating Amdahl’s law,” Commun. ACM, vol. 31, no. 5, pp.
532–533, Jan. 1988.

[29] J. Weathers. “Methods for quantum circuit design and simulation,” M.S. thesis,
Comp. Sci., Naval Postgraduate School, Monterey, CA, 2010.

 110

THIS PAGE INTENTIONALLY LEFT BLANK

 111

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

16Sep_Fischer_James_Supplemental.tar

16Sep_Fischer_James_Supplemental/._.DS_Store

16Sep_Fischer_James_Supplemental/.DS_Store

16Sep_Fischer_James_Supplemental/bash_slurm.sh

#!/bin/bash
#
#SBATCH --job-name=job_name
#SBATCH --output=bashout/output_file.out
#
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=16
#
#SBATCH --time=36:00:01
#
SBATCH --partition=beards
#
#SBATCH --exclusive
#
#SBATCH --constraint=intel

##
#
Output some useful job information.
#
##

echo --
if ["${SLURM_NNODES}" -eq "1"]
then
 echo 'CPUS(xNODES): '${SLURM_JOB_CPUS_PER_NODE}'(x1)'
else
 echo 'CPUS(xNODES): '${SLURM_JOB_CPUS_PER_NODE}
fi
echo 'Job is running on nodes:'
echo $SLURM_JOB_NODELIST
echo --
echo SLURM: submission node: $SLURM_SUBMIT_HOST
echo SLURM: partition: $SLURM_JOB_PARTITION
echo SLURM: submission directory: $SLURM_SUBMIT_DIR
echo SLURM: job identifier: $SLURM_JOBID
echo SLURM: job name: $SLURM_JOB_NAME
echo SLURM: current home directory: $HOME
echo SLURM: PATH: $PATH
echo --

source /etc/profile
module use /usr/share/Modules/modulefiles
module load compile/gcc/5.2.0
module load mpi/openmpi/1.10.2
module load julia/0.4.5

cd $SLURM_SUBMIT_DIR

mpirun -np 32 julia simulator_p.jl 14

16Sep_Fischer_James_Supplemental/inplace_hadamard.jl

#Sequential 2*H^xN circuit implementation (Version 99)
#James Fischer

function hadamard!(a_prime, a, N, h)
 #Applies a H-gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # h, the index of the bit to which the H-gate is applied (0th bit is the left-most bit)
 # a_prime, the state vector representing the quantum
 # system after the H-gate is applied to the hth bit
 #Outputs: none

 scalar = 1/sqrt(2)
 mask = (2^N - 1) $ (1<<(N-1-h))

 @inbounds for i = 0:(2^N)-1

 boldbit = (i >> (N - 1 - h)) & 1

 if boldbit == 0
 a0 = (i & mask)
 a1 = (i & mask | (1<<(N-1-h)))
 a_prime[i+1] = (a[a0+1] + a[a1+1])*scalar

 elseif boldbit == 1
 a0 = (i & mask)
 a1 = (i & mask | (1<<(N-1-h)))
 a_prime[i+1] = (a[a0+1] - a[a1+1])*scalar
 end
 end
end

#~~
HELPER FUNCTIONS:
#~~

function generateA(phi, N)
 #Function generates the state vector of a quantum system given by phi. Used
 # before applying any quantum gates to the system.
 #Inputs: N, the number of qubits in the quantum register
 # phi, initial state of a quantum register (in either bytes or Int format)
 #Usage: An initial quantum register of three qubits all equal to 1
 # would be N=3, phi= 0b111 or phi = 7
 #Outputs: A, a vector of length 2^N representing the state of the quantum system

 #Int, not Complex; built in kron(A,B) function does not like Complex
 A = zeros(2^N)
 A[phi+1] = 1
 return A
end

function ketA(A)
 #Function prints the ket notation of the state vector A
 #Inputs: A, state vector of a quantum system
 #Outputs: ket notation of A (to stdout)

 N = length(A)
 for i = 1:N
 if A[i] != 0+0im
 @printf("|%d> ",i-1)
 println(A[i])
 end
 end
end

#~~
MAIN
#~~

function main()

 #Parse args and init
 if length(ARGS) != 1
 println("Usage julia inplace_hadamard.jl [N]")
 return
 end
 #phi = 0b01
 N = parse(Int, ARGS[1])
 phi = rand(0:2^N)

 #Discard output for compilation run
 let
 oldSTDOUT = STDOUT
 (outread, outwrite) = redirect_stdout()
 @printf("Compilation run\n")
 @time let
 a = generateA(0b1, 1)
 b = copy(a)
 hadamard!(b, a,1,1)
 end
 close(outread)
 close(outwrite)
 redirect_stdout(oldSTDOUT)
 end

 @time let

 @printf("Initial State:\n")
 ketA(generateA(phi,N))
 a0 = generateA(phi,N)
 a1 = copy(a0)

 for i = 0:N-1
 hadamard!(a1, a0,N,i)
 a0, a1 = a1, a0
 end

 #= FOR TESTING
 @printf("Intermediate State:\n")
 ketA(a0)
 =#

 for i =0:N-1
 hadamard!(a1, a0,N,i)
 a0, a1 = a1, a0
 end

 @printf("Final State:\n")
 ketA(a0)
 end

end

main()

16Sep_Fischer_James_Supplemental/naive_hadamard.jl

#Naive (full-matrix) 2*H^xN circuit implementation (Version 99)
#James Fischer

function generateA(phi, N)
 #Function generates the state vector of a quantum system given by phi. Used
 # before applying any quantum gates to the system.
 #Inputs: N, the number of qubits in the quantum register
 # phi, initial state of a quantum register (in either bytes or Int format)
 #Usage: An initial quantum register of three qubits all equal to 1
 # would be N=3, phi= 0b111 or phi = 7
 #Outputs: A, a vector of length 2^N representing the state of the quantum system

 #Int, not Complex; built in kron(A,B) function does not like Complex
 A = zeros(2^N)
 A[phi+1] = 1
 return A
end

function ketA(A)
 #Function prints the ket notation of the state vector A
 #Inputs: A, state vector of a quantum system
 #Outputs: ket notation of A (to stdout)

 N = length(A)
 for i = 1:N
 if !isapprox(A[i],0, atol=0.0001)
 @printf("|%d> ",i-1)
 println(A[i])
 end
 end
end

function recursive_kron(A, B, i)
 #Function recursively performs (i-1) Kronecker products of A and B
 #Inputs: A and B, same dimension matrices
 # i, the number of desired Kronecker products
 #

 #Base case. Simply return the Kronecker product of A and B
 if i == 2
 answer = kron(A, B)
 return answer

 #Recursive case. Take the Kronecker product of A and B and decrement i.
 else
 B = kron(A, B)
 recursive_kron(A, B, i-1)
 end
end

#~~
MAIN
#~~

function main()

 #Parse args and init
 if length(ARGS) != 1
 println("Usage julia naive_hadamard.jl [N]")
 return
 end
 #phi = 0b01010101
 N = parse(Int, ARGS[1])
 phi = rand(0:2^N)

 H = 1/sqrt(2)*[1 1;1 -1]
 I = eye(2)

 #Discard output for compilation run
 let
 oldSTDOUT = STDOUT
 (outread, outwrite) = redirect_stdout()
 @printf("Compilation run\n")
 @time let
 a = generateA(0b1, 1)
 b = recursive_kron(H,H,2)
 end
 close(outread)
 close(outwrite)
 redirect_stdout(oldSTDOUT)
 end

 xform2 = Array{Float64}

 @printf("Initial State:\n")
 ketA(generateA(phi,N))
 vector = generateA(phi,N)

 @printf("\nPerformance run:\n")
 @time let

 H = recursive_kron(H,H,N)
 xform1 = H*vector
 xform2 = H*xform1
 end
 @printf("Final State:\n")
 ketA(xform2)
end

main()

16Sep_Fischer_James_Supplemental/parallel_hadamard.jl

#Parallel 2*H^xN circuit implementation (Version 9.1)
#James Fischer

#Load MPI library and declare global constants
import MPI
const MASTER = 0
const READ = 1
const STORE = 2
const SWAP = 3
const DATA0 = 19
const DATA = 20
const CONTROL = 21
const EXIT = 99

#Global counters & dictionaries
reads = 0
stores = 0
swaps = 0

readsDict = Dict{Int64, Int64}()
storesDict = Dict{Int64, Int64}()
swapsDict = Dict{Int64, Int64}()

function slaveRead(procNum, offset, rank, comm)
 #Tells slave with rank = procNum to read from their local offset

 task = [READ]
 #Ensure only master node does this
 if rank == MASTER

 send_msg = [offset]
 recv_msg = [-1.0]

 #Increment global reads
 global reads += 1

 #Send control Message
 MPI.Send(task, procNum, CONTROL, comm)

 #Send and recv data message
 MPI.Send(send_msg, procNum, DATA, comm)
 MPI.Recv!(recv_msg, procNum, DATA, comm)
 value = recv_msg[1]
 else
 @printf("Error. Slave node attempting to call slaveRead\n")
 end
 return value
end

function slaveStore(procNum, offset, value, rank, comm)
 #Tells slave with rank = procNum to write a value to their local offset

 task = [STORE]
 #Ensure only master node does this
 if rank == MASTER

 index_msg = [offset]
 value_msg = [value]

 #Increment global reads
 global stores += 1

 #Send control message
 MPI.Send(task, procNum, CONTROL, comm)

 #Send data message (index)
 MPI.Send(index_msg, procNum, DATA0, comm)
 #Send data message (value)
 MPI.Send(value_msg, procNum, DATA, comm)

 else
 @printf("Error. Slave node attempting to call slaveStore\n")
 return
 end
end

function slaveSwap(rank, size, comm)
 #Broadcast buffer swap to all slaves

 task_msg = [SWAP]
 if rank == MASTER
 @inbounds for i = 1 : (size-1)
 global swaps += 1
 #Control message
 MPI.Send(task_msg, i, CONTROL, comm)
 end

 else
 @printf("Error, slave calling slaveSwap")
 return
 end
end

function slaveExit(rank, size, comm)
 #Tell slaves to terminate their loop

 task_msg = [EXIT]
 offset_msg = [-1]
 offset = -1
 procNum = -1

 @inbounds for i = 1:size-1
 MPI.Send(task_msg, i, CONTROL, comm)
 MPI.Recv!(offset_msg, i, DATA, comm)

 if offset_msg != [-1]
 offset = offset_msg[1]
 procNum = i
 end
 end

 return offset, procNum
end

function slaveLoop(local_a, local_a_prime, stride, send_msg, recv_msg, task_msg, rank, size, comm)
 #Slaves enter an infinite loop awaiting commands from the master

 if rank == MASTER
 @printf("Error, MASTER in slaveLoop")
 return
 end

 #Slave node loop
 while true

 #Wait for control Message
 MPI.Recv!(task_msg, MASTER, CONTROL, comm)
 task = task_msg[1]

 if task == READ
 #Wait for data message
 MPI.Recv!(recv_msg, MASTER, DATA, comm)

 offset = recv_msg[1]
 value = local_a[offset+1]
 send_msg = [value]

 #Uncomment for testing:
 #@printf("Node %d READS a %d at offset %d.\n", rank, value, offset)
 MPI.Send(send_msg, MASTER, DATA, comm)
 continue

 elseif task == STORE
 #Wait for data message
 index_msg = [-1]
 value_msg = [-1.0]

 MPI.Recv!(index_msg, MASTER, DATA0, comm)
 offset = index_msg[1]
 MPI.Recv!(value_msg, MASTER, DATA, comm)
 value = value_msg[1]

 if offset != -1
 local_a_prime[offset+1] = value
 end
 continue

 elseif task == SWAP
 #Swap local buffers
 @inbounds for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 continue

 elseif task == EXIT
 offset = [-1]
 #Any node with nonzero amplitudes sends them to master.
 #NOTE: this will cause the master node to display an incorrect value for an improperly
 # terminating quantum circuit (i.e., one that does not finish in a classical state).
 # However, the correct amplitudes can still be inspected in the individual output
 # text files generated by each processor.
 @inbounds for i = 1:stride
 if local_a[i] != 0+0im
 offset = [i-1]
 end
 end
 MPI.Send(offset, MASTER, DATA, comm)
 break
 end
 end
end

function hadamard!(N, h, stride, rank, size, comm, local_a, local_a_prime)
 #Applies an H-gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # h, the index of the bit to which the H-gate is applied (0th bit is the least significant bit)
 # a_prime, the state vector representing the quantum system after the H-gate is applied to the hth bit
 #Outpus: none

 if rank != MASTER
 @printf("Error, slave attempting to perform Hadamard")
 return
 end

 scalar = 1/sqrt(2)
 mask = (2^N - 1) $ (1<<(N-1-h))

 @inbounds for i = 0:(2^N)-1

 boldbit = (i >> (N - 1 - h)) & 1

 #Compute a0
 index0 = (i & mask)
 procNum0 = div(index0, stride)
 offset0 = index0 % stride
 if procNum0 == MASTER
 a0 = local_a[offset0+1]
 else
 a0 = slaveRead(procNum0, offset0, rank, comm)
 end

 #Compute a1
 index1 = (i & mask | (1<<(N-1-h)))
 procNum1 = div(index1, stride)
 offset1 = index1 % stride
 if procNum1 == MASTER
 a1 = local_a[offset1+1]
 else
 a1 = slaveRead(procNum1, offset1, rank, comm)
 end

 #Determine the new value to be stored in a_prime
 if boldbit == 0
 value = Float64((a0+a1)*scalar)
 elseif boldbit == 1
 value = Float64((a0-a1)*scalar)
 end

 #store the new value at the appropriate index
 procNum = div(i, stride)
 offset = i % stride
 if procNum == MASTER
 local_a_prime[offset+1] = value
 else
 slaveStore(procNum, offset, value, rank, comm)
 end
 end

 #Swap all local and nonlocal pointers
 @inbounds for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function main()

 #Parse args and init
 if length(ARGS) != 1
 println("Usage mpirun -np [numProcs] julia parallel_hadamard.jl [N]")
 return
 end
 N = parse(Int, ARGS[1])
 phi = rand(0:(2^N-1))

 #Open MPI; get the communicator, rank, and size
 MPI.Init()
 comm = MPI.COMM_WORLD
 rank = MPI.Comm_rank(comm)
 size = MPI.Comm_size(comm)

 #Check for legal comm size
 assert(size%2 ==0)
 assert(size <= 2^N)

 #Determine how states I am responsible for
 stride = Int((2^N)/size)

 #Determine the "local a"
 start = Int(rank * stride)
 fin = Int((rank+1)*stride-1)

 #Initialize all local memories with zeros
 local_a = zeros(Float64, stride)
 local_a_prime = copy(local_a)

 #Pack the message
 send_msg = [-1]
 recv_msg = [-1]
 task_msg = [-1]

 #Display the "global a" to the screen
 if rank == MASTER
 procNum = div(phi, stride)
 offset = phi % stride

 @printf("I am the master node. Initial state is: |%d>\n", phi)

 #Store the initial classical state in a_prime
 if procNum == MASTER
 local_a[offset+1] = 1.0
 else
 slaveStore(procNum, offset, 1.0, rank, comm)
 slaveSwap(rank, size, comm)
 end

 ## APPLY GATES HERE: ~~
 timer = 0.
 tic()

 @inbounds for i = 0:N-1
 global reads
 reads = 0
 global stores
 stores = 0
 global swaps
 swaps = 0
 #Place all qubits into superposition
 hadamard!(N,i,stride, rank, size, comm, local_a, local_a_prime)

 #Count read / store / swaps for this iteration
 readsDict[i] = reads
 storesDict[i] = stores
 swapsDict[i] = swaps
 end

 #uncomment to display total reads/stores /swaps counter
 #println("ReadsDict:")
 #println(readsDict)
 #println("StoresDict:")
 #println(storesDict)
 #println("SwapsDict:")
 #println(swapsDict)

 @inbounds for i = 0:N-1
 #Take all qubits out of superposition
 hadamard!(N,i,stride, rank, size, comm, local_a, local_a_prime)
 end

 timer += toq()
 @printf("Elapsed = %f\n", timer)

 @printf("From master's perspective, %d reads, %d writes and %d swaps were called\n", reads, stores, swaps)

 #End of simulation; tell the slaves to exit their loop
 offset, procNum = slaveExit(rank, size, comm)

 @inbounds for i = 1:stride
 if local_a[i] != 0
 offset = i-1
 procNum = 0
 end
 end

 phi_n = (procNum * stride) + offset
 @printf("MASTER. offset = %d, procNum = %d. final state = |%d>\n", offset, procNum, phi_n)

 else
 #Slave nodes enter slave loop
 slaveLoop(local_a, local_a_prime, stride, send_msg, recv_msg, task_msg, rank, size, comm)
 end

 #Each node prints their local states to a .txt file
 filename = @sprintf("output/proc_%03d.txt", rank)
 fid = open(filename, "w")
 @printf(fid, "\n I am processor %d of %d\n", rank, size)
 @printf(fid, "I start at %d and finish at %d\n", start, fin)
 @printf(fid, "My states are: \n")
 println(fid, local_a)

 #cleanup
 close(fid)
 MPI.Barrier(comm)
 MPI.Finalize()
end

main()

16Sep_Fischer_James_Supplemental/._README

16Sep_Fischer_James_Supplemental/README

Naval Postgraduate School
Monterey, CA

Supplemental to Thesis (1 of 1: Code repository)

Thesis Title: “A Parallel Quantum Computer Simulator”
Author: LT James Fischer

Advisor: Prof. Ted Huffmire
Second Reader: Prof. James Luscombe

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DESCRIPTION:

The files contained in this directory contain scripts intended to
study various aspects of quantum computer simulation.  They may be
executed on a variety of different types of hardware. A full
description of the methodology behind these files as well as the
results of experimentation can be found in LT James Fischer's 2016 NPS
Thesis entitled "A Parallel Quantum Computer Simulator."

Special thanks to Prof. Ted Huffmire, Prof. Jeremy Kozdon, and
Prof. Jim Luscombe.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
USAGE:

1.) All files are executed using the Julia 0.4.5 JIT compiler
2.) Usage of individual files is as follows

2*H^xN circuit scalability scripts:
julia naive_hadamard.jl [N]
julia inplace_hadamard.jl [N]
mpirun -np [procs] julia parallel_hadamard.jl [N]

Universal quantum computer scripts:

julia simulator_s.jl circuits/[QDLfilename]
mpirun -np [procs] julia simulator_p.jl circuits/[QDLfilename]

where: procs = number of MPI processes
	 N = size of the quantum register
	 QDLfilename = name of the QDL file within the circuits/
	 directory

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HAMMING NOTES:

To run these files on the Hamming HPC, first request a compute node as
follows:

srun -N [N] -n [n] -C [intel | amd] --pty bash

Next, load the necessary modules (in this order):

module use /usr/share/Modules/modulefiles
module load compile/gcc/5.2.0
module load  mpi/openmpi/1.10.2
module load julia/0.4.5


All files should now run on the Hamming HPC using the commands from
the previous section.  Alternatively, the bash_slurm.sh file can be
modified as desired and executed directly in non-interactive mode
from a compute node with the following command:

sbatch bash_slurm.sh


More about SLURM and details of requesting nodes and/or running bash
scripts can be found on the Hamming Wiki.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
BRIEF DESCRIPTION OF FILES AND DIRECTORIES:

1.) naive_hadamard.jl: Sequentially simulates the full-matrix 2*H^xN circuit
 for N qubits. N is entered as a command line argument.

2.) inplace_hadamard.jl: Sequentially simulates the matrix-free 2*H^xN circuit
 for N qubits. N is entered as a command line argument.

3.) parallel_hadamard.jl: Simulates the matrix-free 2*H^xN circuit
 for N qubits in parallel. N and number of processors are entered
 command line arguments.

4.) simulator_s.jl: Sequential universal quantum computer simulator.
 Designed for use with QDL files.

5.) simulator_s.jl: Parallel universal quantum computer simulator.
 Designed for use with QDL files.

6.) circuits/: Directory containing sample QDL circuits. Some of
 these circuits were designed for use on an old Java simulator.
 As such, some of the circuit files contain gates that were not
 implemented and therefore will not run on this version of
 the simulator. The circuits that were described in the thesis all
 run properly on this simulator.

7.) output/: Directory containing the output of each individual
 processor after executing the parallel universal quantum
 simulator. NB: the MPI programs WILL NOT RUN without this
 directory being included in the home directory.

8.) bashout/: Directory containing the output files of the
 bash_slurm.sh bash script. NB: the bash script WILL NOT RUN
 without this directory being included in the home directory.

DISCLAIMER:

Copyright (c) 2016 Naval Postgraduate School
All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for educational, research and non-profit purposes,
without fee, and without a written agreement is hereby granted,
provided that the above copyright notice, this paragraph and the
following three paragraphs appear in all copies.

Permission to incorporate this software into commercial products may
be obtained by contacting the Naval Postgraduate School.

This software program and documentation are copyrighted by the Naval
Postgraduate School. The software program and
documentation are supplied "as is", without any accompanying services
from the Naval Postgraduate School. The Naval Postgraduate School does
not warrant that the operation of the program will be uninterrupted or
error-free. The end-user understands that the program was developed
for research purposes and is advised not to rely exclusively on the
program for any reason.

IN NO EVENT SHALL THE NAVAL POSTGRADUATE SCHOOL BE LIABLE TO ANY PARTY
FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND
ITS DOCUMENTATION, EVEN IF THE NAVAL POSTGRADUATE SCHOOL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. THE NAVAL POSTGRADUATE
SCHOOL SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS"
BASIS, AND THE NAVAL POSTGRADUATE SCHOOL HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

16Sep_Fischer_James_Supplemental/simulator_p.jl

#Parallel Universal Quantum Computer Simulator (Version 99)
#James Fischer

#Load MPI library and declare global constants
import MPI

const MASTER = 0
const READ = 1
const STORE = 2
const SWAP = 3
const DATA0 = 19
const DATA = 20
const CONTROL = 21
const EXIT = 99

reads = 0
stores = 0
swaps = 0

#~~
QUANTUM GATES
#~~

function hadamard!(N, h, stride, rank, size, comm, local_a, local_a_prime)
 #Applies an H-gate to the quantum system represented by state vector a
 #Inputs: stride, rank, size, & comm (global MPI paramaters)
 # local_a and local_a_prime in master node's local memory
 # N, number of qubits in the quantum system
 # h, the index of the bit to which the H-gate is applied
 #Outputs: updated local_a vectors for all nodes

 if rank != MASTER
 @printf("Error, slave attempting to perform Hadamard")
 return
 end

 scalar = 1/sqrt(2)
 mask = (2^N - 1) $ (1<<(N-1-h))

 for i = 0:(2^N)-1

 boldbit = (i >> (N - 1 - h)) & 1

 #Compute a0
 index0 = (i & mask)
 procNum0 = div(index0, stride)
 offset0 = index0 % stride
 if procNum0 == MASTER
 a0 = local_a[offset0+1]
 else
 a0 = slaveRead(procNum0, offset0, rank, comm)
 end

 #Compute a1
 index1 = (i & mask | (1<<(N-1-h)))
 procNum1 = div(index1, stride)
 offset1 = index1 % stride
 if procNum1 == MASTER
 a1 = local_a[offset1+1]
 else
 a1 = slaveRead(procNum1, offset1, rank, comm)
 end

 #Determine the new value to be stored in a_prime
 if boldbit == 0
 value = Complex((a0+a1)*scalar)
 elseif boldbit == 1
 value = Complex((a0-a1)*scalar)
 end

 #store the new value at the appropriate index
 procNum = div(i, stride)
 offset = i % stride
 if procNum == MASTER
 local_a_prime[offset+1] = value
 else
 slaveStore(procNum, offset, value, rank, comm)
 end
 end

 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function xGate!(N, x, stride, rank, size, comm, local_a, local_a_prime)
 #Applies an X-gate to the quantum system represented by state vector a
 #Inputs: stride, rank, size, & comm (global MPI paramaters)
 # local_a and local_a_prime in master node's local memory
 # N, number of qubits in the quantum system
 # x, the index of the bit to which the X-gate is applied (0th bit is the most significant bit)
 #Outputs: updated local_a vectors for all nodes

 #Ensure slave nodes do not perform computation
 if rank != MASTER
 @printf("Error, slave attempting to perform Hadamard")
 return
 end

 mask = (2^N - 1) $ (1<<(N-1-x)) #Compute bitmask

 for i = 0: (2^N)-1

 #Compute boldbit based on index of x
 boldbit = (i >> (N - 1 - x)) & 1

 #Compute NOT of the boldbit
 if boldbit == 0
 antiBoldBit = 1
 elseif boldbit == 1
 antiBoldBit = 0
 end

 #Compute the read index & procNum
 index0 = ((i & mask) | (antiBoldBit << (N-1-x)))
 procNum0 = div(index0, stride)
 offset0 = index0 % stride

 if procNum0 == MASTER #Read local qubit
 value = local_a[index0+1]
 else #Read nonlocal qubit
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 #Compute the write index & procNum
 procNum1 = div(i,stride)
 offset1 = i%stride

 if procNum1 == MASTER #Update local qubit
 local_a_prime[i+1] = value
 else #Update nonlocal qubit
 slaveStore(procNum1, offset1, value, rank, comm)
 end

 end
 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function zGate!(N, z, stride, rank, size, comm, local_a, local_a_prime)
 #Applies a Z-gate to the quantum system represented by state vector a
 #Inputs: stride, rank, size, & comm (global MPI paramaters)
 # local_a and local_a_prime in master node's local memory
 # N, number of qubits in the quantum system
 # z, the index of the bit to which the Z-gate is applied
 #Outputs: updated local_a vectors for all nodes

 mask = (2^N - 1) $ (1<<(N-1-z)) #Compute bitmask

 for i = 0: (2^N)-1

 #Determine boldbit based on index of z
 boldbit = (i >> (N - 1 - z)) & 1

 #Compute read index and procNum
 index0 = ((i & mask) | (boldbit << (N-1-z)))
 procNum0 = div(index0, stride)
 offset0 = index0 % stride

 if procNum0 == MASTER
 value = local_a[index0+1]
 else
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 #Compute write index and procNum
 procNum1 = div(i, stride)
 offset1 = i % stride

 if boldbit == 0
 if procNum1 == MASTER
 local_a_prime[i+1] = value
 else
 slaveStore(procNum1, offset1, value, rank, comm)
 end
 elseif boldbit == 1
 negValue = -1*value
 if procNum1 == MASTER
 local_a_prime[i+1] = negValue
 else
 slaveStore(procNum1, offset1, negValue, rank, comm)
 end
 end
 end
 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function sGate!(N, s, stride, rank, size, comm, local_a, local_a_prime)
 #Equivalent to an R(phi) gate where phi = pi/2
 #Applies an S gate to the quantum system represented by state vector a
 #Inputs: stride, rank, size, & comm (global MPI paramaters)
 # local_a and local_a_prime in master node's local memory
 # N, number of qubits in the quantum system
 # s, the index of the bit to which the Z-gate is applied
 #Outputs: updated local_a vectors for all nodes

 mask = (2^N - 1) $ (1<<(N-1-s)) #Determine the bitmask

 for i = 0: (2^N)-1

 #Compute boldbit each iteration
 boldbit = (i >> (N - 1 - s)) & 1

 #Compute the read offset & procNum
 index0 = ((i & mask) | (boldbit << (N-1-s)))
 procNum0 = div(index0, stride)
 offset0 = index0 % stride

 if procNum0 == MASTER
 value = local_a[index0+1]
 else
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 r = real(value)
 ima = imag(value)

 #Compute write index and procNum
 procNum1 = div(i, stride)
 offset1 = i % stride

 if boldbit == 0
 storeValue = r + ima

 if procNum1 == MASTER
 local_a_prime[i+1] = storeValue
 else
 slaveStore(procNum1, offset1, storeValue, rank, comm)
 end
 elseif boldbit == 1
 storeValue = -ima + r*im
 if procNum1 == MASTER
 local_a_prime[i+1] = storeValue
 else
 slaveStore(procNum1, offset1, storeValue, rank, comm)
 end
 end
 end
 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function tGate!(N, t, stride, rank, size, comm, local_a, local_a_prime)
 #Equivalent to an R(phi) gate where phi = pi/4
 #Applies an S gate to the quantum system represented by state vector a
 #Inputs: stride, rank, size, & comm (global MPI paramaters)
 # local_a and local_a_prime in master node's local memory
 # N, number of qubits in the quantum system
 # s, the index of the bit to which the Z-gate is applied
 #Outputs: updated local_a vectors for all nodes

 mask = (2^N - 1) $ (1<<(N-1-t))
 scalar = 1/sqrt(2)

 for i = 0: (2^N)-1
 boldbit = (i >> (N - 1 - t)) & 1

 #Compute the read index & procNum
 index0 = ((i & mask) | (boldbit << (N-1-t)))
 procNum0 = div(index0, stride)
 offset0 = index0 % stride

 if procNum0 == MASTER
 value = local_a[offset0+1]
 else
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 #Compute the write index & procNum
 procNum1 = div(i, stride)
 offset1 = i % stride

 r = real(value)
 ima = imag(value)

 if boldbit == 0
 if procNum1 == MASTER
 local_a_prime[i+1] = value
 else
 slaveStore(procNum1, offset1, value, rank, comm)
 end
 elseif boldbit == 1
 a0 = (r - ima) * scalar
 a1 = (r + ima) * scalar * (im)
 storeValue = a0 + a1

 if procNum1 == MASTER
 local_a_prime[i+1] = storeValue
 else
 slaveStore(procNum1, offset1, storeValue, rank, comm)
 end
 end
 end
 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function measurement!(N, M, stride, rank, size, comm, local_a, local_a_prime)
 #M is the index of the bit being measured (0 based indexing)

 prob0 = 0
 prob1 = 0
 value = 0.0

 myRand = rand()
 mask = (N - 1 - M)

 #Iterate through and compute the cumulative probabilities of measuring a 0 or 1
 for i = 0:2^N-1
 boldBit = (i >> mask) & 1

 procNum0 = div(i, stride)
 offset0 = i % stride

 if procNum0 == MASTER #Read the local amplitude
 value = local_a[i+1]
 else #Read nonlocal amplitude
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 #Sum the probabilities of measuring a 0 or 1 each iteration
 if boldBit == 0
 prob0 += real(value)^2 + imag(value)^2
 elseif boldBit == 1
 prob1 += real(value)^2 + imag(value)^2
 end
 end

 #Compare the probability to the pseudorandom number
 if prob0 > myRand
 @printf("\nMEASUREMENT! Qubit %d = 0\n", M)
 else
 @printf("\nMEASUREMENT! Qubit %d = 1\n", M)
 end

 #Iterate through and sum the cumulative probabilities at each index
 cumulativeProb = 0
 for i = 0:2^N-1
 boldBit = (i >> mask) & 1

 procNum0 = div(i, stride)
 offset0 = i % stride

 if procNum0 == MASTER #Read the local amplitude
 value = local_a[i+1]
 else #Read nonlocal amplitudes
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 if (boldBit == 0) && (myRand < prob0)
 cumulativeProb += real(value)^2 + imag(value)^2
 end
 if (boldBit == 1) && (myRand > prob0)
 cumulativeProb += real(value)^2 + imag(value)^2
 end
 end

 probability = sqrt(1/cumulativeProb)

 #Iterate through and update the values of local_a_prime
 for i = 0:2^N-1

 procNum1 = div(i, stride)
 offset1 = i % stride

 boldBit = (i >> mask) & 1

 if (boldBit == 0) && (myRand > prob0)
 amplitude = 0 + 0im
 if procNum1 == MASTER
 local_a_prime[i+1] = amplitude
 else
 slaveStore(procNum1, offset1, amplitude, rank, comm)
 end

 elseif (boldBit == 1) && (myRand < prob0)
 amplitude = 0 + 0im

 if procNum1 == MASTER
 local_a_prime[i+1] = amplitude
 else
 slaveStore(procNum1, offset1, amplitude, rank, comm)
 end

 else

 if procNum1 == MASTER
 value = local_a[i+1]
 else
 value = slaveRead(procNum1, offset1, rank, comm)
 end

 amplitude = probability * real(value) + probability * imag(value)

 if procNum1 == MASTER
 local_a_prime[i+1] = amplitude
 else
 slaveStore(procNum1, offset1, amplitude, rank, comm)
 end
 end
 end

 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function controlledNot!(N, C, T, stride, rank, size, comm, local_a, local_a_prime)

 value = 0.0

 for i = 0:((2^N)-1)

 controlQubit = (i >> (N - 1 - C)) & 1
 targetQubit = (i >> (N - 1 - T)) & 1

 if targetQubit == 0
 antiTarget = 1
 elseif targetQubit == 1
 antiTarget = 0
 end

 if controlQubit == 1
 mask = (2^N-1) $ (1 << (N-1-T))
 index = ((i & mask) | (antiTarget << (N-1-T)))

 #read a[index]
 procNum0 = div(index, stride)
 offset0 = index % stride

 if procNum0 == MASTER
 value = local_a[offset0+1]
 else
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 #Write to a_prime[i+1]
 procNum1 = div(i, stride)
 offset1 = i % stride

 if procNum1 == MASTER
 local_a_prime[i+1] = value
 else
 slaveStore(procNum1, offset1, value, rank, comm)
 end
 end
 end

 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

function toffoli!(N, C1, C2, T, stride, rank, size, comm, local_a, local_a_prime)

 for i = 0:((2^N)-1)

 controlQubit1 = (i >> (N - 1 - C1)) & 1
 controlQubit2 = (i >> (N - 1 - C2)) & 1
 targetQubit = (i >> (N - 1 - T)) & 1

 if targetQubit == 0
 antiTarget = 1
 elseif targetQubit == 1
 antiTarget = 0
 end

 if (controlQubit1 == 1) && (controlQubit2 == 1)

 mask = (2^N-1) $ (1 << (N-1-T))
 index = ((i & mask) | (antiTarget << (N-1-T)))

 #read a[index]
 procNum0 = div(index, stride)
 offset0 = index % stride

 if procNum0 == MASTER
 value = local_a[offset0+1]
 else
 value = slaveRead(procNum0, offset0, rank, comm)
 end

 #Write to a_prime[i+1]
 procNum1 = div(i, stride)
 offset1 = i % stride

 if procNum1 == MASTER
 local_a_prime[i+1] = value
 else
 slaveStore(procNum1, offset1, value, rank, comm)
 end
 end
 end
 #Swap all local and nonlocal pointers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 slaveSwap(rank, size, comm)
end

#~~
PARSER
#~~

function parseQDL(file)
 #Function parses a QDL file
 #Inputs: file, (ASCIIstring) name of the QDL file to be parsed
 #Outputs: ket notation of A the final state (to stdout, using ketA() function)

 #Open the QDL file and initialize
 filename = open(file)
 body = readlines(filename)

 beginTransforms = 999
 N = 0
 phi = 0
 phi_str = "0b"
 blackbox = false
 U = Array{Int,Int}
 completeU = false
 dim = 0

 #Iterate through each line of the QDL file
 for lineNumber in 1:length(body)

 splitLine = split(body[lineNumber])

 #Determine N (MUST be on line 1):
 if lineNumber == 1
 N = parse(Int, splitLine[end])
 end

 if (lineNumber == 2) && (splitLine[2] == "U") #Black-box function present
 #Blackbox not fully implemented in parallel simulator
 dim = parse(Int, splitLine[end])
 U = zeros(Complex, dim, dim)

 for j = 3:dim+2
 U_line = split(body[j])
 for k = 1:dim
 val = parse(Int, U_line[k])
 U[j-2,k]=val
 end
 end

 phi_line = split(body[lineNumber+dim+2])
 for k = 1:length(phi_line)
 phi_str *= phi_line[k]
 end
 beginTransforms = dim+4

 elseif (lineNumber == 2) && (splitLine[2] != "U") #No black-box

 phi_line = split(body[lineNumber+1])
 for k = 1:length(phi_line)
 phi_str *= phi_line[k]
 end
 beginTransforms = 4
 end
 end

 phi = parse(Int, phi_str)
 return N, phi, beginTransforms, U
 close(filename)
end

function parseTransforms(file, beginTransforms, N, U, stride, rank, size, comm, local_a, local_a_prime)
 #Function parses the transforms of the QDL file, beginning at line number beginTransforms

 #Open the QDL file and initialize
 filename = open(file)
 body = readlines(filename)
 transformNumber = 1

 for lineNumber in 1:length(body)

 splitLine = split(body[lineNumber])
 if lineNumber > beginTransforms

 if splitLine[1] == "Define"
 transformNumber +=1
 continue
 else
 #Determine which quantum gate to apply
 transform = parseGates(splitLine)

 if transform[1] == "H" #Hadamard
 h = transform[2]
 hadamard!(N, h, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "CNOT" #CNOT
 C = transform[2][1]
 T = transform[2][2]
 controlledNot!(N, C, T, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "Toffoli" #Toffoli
 C1 = transform[2][1]
 C2 = transform[2][2]
 T = transform[2][3]
 toffoli!(N, C1, C2, T, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "X" #Pauli-X
 x = transform[2]
 xGate!(N, x, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "Z" #Pauli-Z
 z = transform[2]
 zGate!(N, z, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "S" #S gate
 s = transform[2]
 sGate!(N, s, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "T" #Pi/2 phase shift
 t = transform[2]
 tGate!(N, t, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform[1] == "M" #Measurement
 m = transform[2]
 measurement!(N, m, stride, rank, size, comm, local_a, local_a_prime)
 elseif transform == "U" #Unitary transform matrix
 @printf("Blackbox function present! Blackbox functionality unavailable in parallel sim. Please use simulator_s.jl")
 end
 end
 end
 end
 close(filename)
 end

function parseGates(splitLine)
 #Function determines what transform occurs in a given QDL line
 #Inputs: splitLine, an array of ASCII strings split the SPACE character
 #Outputs: transform, a 2-tuple consisting of:
 # [1] a char indicating the type of gate to apply
 # [2] indices of the qubits to which the gates are applied
 # (Int for single qubit gates, tuple for multi-qubit gates)

 #Hadamard gate. Parse type and index of H-gate
 if "H" in splitLine
 h = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "H"
 h = i-1
 end
 end
 transform = ("H", h)

 #Cnot gate. Parse type and indices of C & T bits
 elseif "Control" in splitLine
 C = -1
 T = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "Control"
 C = i-1
 elseif splitLine[i] == "Target"
 T = i-1
 end
 end
 transform = ("CNOT", (C,T))

 #Toffoli gate. parse type and indices of C1, C2, & T bits
 elseif "UT1" in splitLine
 T = -1
 C1 = -1
 C2 = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "UT1"
 T = i-1
 elseif splitLine[i] == "UT2"
 C1 = i-1
 elseif splitLine[i] == "UT3"
 C2 = i-1
 end
 end
 transform = ("Toffoli", (C1, C2, T))

 #Pauli-X gate. Parse type and index of X-gate
 elseif "X" in splitLine
 x = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "X"
 x = i-1
 end
 end
 transform = ("X", x)

 #Pauli-Z gate. Parse type and index of Z-gate
 elseif "Z" in splitLine
 z = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "Z"
 z = i-1
 end
 end
 transform = ("Z", z)

 #S gate. Parse type and index of Z-gate
 elseif "S" in splitLine
 s = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "S"
 s = i-1
 end
 end
 transform = ("S", s)

 #Phase Shift (phi = pi/2) gate. Parse type and index of Z-gate
 elseif "T" in splitLine
 t = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "T"
 t = i-1
 end
 end
 transform = ("T", t)

 #Measurement gate. Parse type and index of measured qubit
 elseif "M" in splitLine
 m = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "M"
 m = i-1
 end
 end
 transform = ("M", m)

 #Apply unitary transform matrix
 elseif "U" in splitLine
 transform = ("U")
 end
 return transform
end

#~~
SLAVE FUNCTIONS
#~~

function slaveRead(procNum, offset, rank, comm)
 #Tells slave with rank = procNum to read from their local offset

 task = [READ]
 #Ensure only master node does this
 if rank == MASTER

 index_msg = [offset]
 value_msg = [-2.0 -2.0]

 #Increment global reads
 global reads += 1

 #Send control Message
 MPI.Send(task, procNum, CONTROL, comm)

 #Send and recv data message
 MPI.Send(index_msg, procNum, DATA, comm)
 MPI.Recv!(value_msg, procNum, DATA, comm)

 value = value_msg[1] + value_msg[2]*im
 else
 @printf("Error. Slave node attempting to call slaveRead\n")
 end
 return value
end

function slaveStore(procNum, offset, value, rank, comm)
 #Tells slave with rank = procNum to write value to their local offset

 task = [STORE]
 #Ensure only master node does this
 if rank == MASTER

 index_msg = [offset]
 r = Float64(real(value))
 i = Float64(imag(value))
 value_msg = [r i]

 #Increment global reads
 global stores += 1

 #Send control message
 MPI.Send(task, procNum, CONTROL, comm)

 #Send data message (index)
 MPI.Send(index_msg, procNum, DATA0, comm)

 #Send data message (value)
 MPI.Send(value_msg, procNum, DATA, comm)

 else
 @printf("Error. Slave node attempting to call slaveStore\n")
 return
 end
end

function slaveSwap(rank, size, comm)
 #Broadcast buffer swap to all slaves

 task_msg = [SWAP]
 if rank == MASTER
 for i = 1 : (size-1)
 global swaps += 1
 #Control message
 MPI.Send(task_msg, i, CONTROL, comm)
 end

 else
 @printf("Error, slave calling slaveSwap")
 return
 end
end

function slaveExit(rank, size, comm)
 #Tell slaves to terminate their loop

 task_msg = [EXIT]
 offset_msg = [-1]
 offset = -1
 procNum = -1

 for i = 1:size-1
 MPI.Send(task_msg, i, CONTROL, comm)
 MPI.Recv!(offset_msg, i, DATA, comm)

 if offset_msg != [-1]
 offset = offset_msg[1]
 procNum = i
 end
 end

 return offset, procNum
end

function slaveLoop(local_a, local_a_prime, stride, rank, size, comm)
 #Slaves enter an infinite loop awaiting commands from the master

 if rank == MASTER
 @printf("Error, MASTER in slaveLoop")
 return
 end

 task_msg = [-1]
 index_msg = [-1]
 value_msg = [-2.0 -2.0]

 #Slave node loop
 while true

 #Wait for control Message
 MPI.Recv!(task_msg, MASTER, CONTROL, comm)
 task = task_msg[1]

 if task == READ
 #Wait for data message
 MPI.Recv!(index_msg, MASTER, DATA, comm)

 offset = index_msg[1]

 r = Float64(real(local_a[offset+1]))
 i = Float64(imag(local_a[offset+1]))
 value_msg = [r i]

 #Uncomment for testing:
 #@printf("Node %d READS a %d at offset %d.\n", rank, value, offset)
 MPI.Send(value_msg, MASTER, DATA, comm)
 continue

 elseif task == STORE
 #Wait for data message

 MPI.Recv!(index_msg, MASTER, DATA0, comm)
 offset = index_msg[1]

 MPI.Recv!(value_msg, MASTER, DATA, comm)
 value = value_msg[1] + value_msg[2]*im

 #Uncomment for testing:
 #@printf("Node %d storing %d +%d*im in offset %d\n", rank, r, i, offset)
 if offset != -1
 local_a_prime[offset+1] = value
 end
 continue

 elseif task == SWAP
 #Swap local buffers
 for i = 1:stride
 local_a[i] = local_a_prime[i]
 end
 continue

 elseif task == EXIT
 #Any node with nonzero amplitudes sends them to master.
 #NOTE: this will cause the master node to display an incorrect value for an improperly
 # terminating quantum circuit (i.e., one that does not finish in a classical state).
 # However, the correct amplitudes can still be inspected in the individual output
 # text files generated by each processor.

 offset = [-1]
 for i = 1:stride
 if local_a[i] != 0+0im
 offset = [i-1]
 end
 end
 MPI.Send(offset, MASTER, DATA, comm)
 break
 end
 end
end

function main()

 #Parse args and init
 if length(ARGS) != 1
 error("Usage: julia simulator.jl [FN], where [FN] is the filename of the QDL file")
 else

 circuitFile = ARGS[1]
 end

 #Open MPI; get the communicator, rank, and size
 MPI.Init()
 comm = MPI.COMM_WORLD
 rank = MPI.Comm_rank(comm)
 size = MPI.Comm_size(comm)

 #Pack the message
 N_msg = [-1]

 if rank == MASTER
 #parse the file
 N, phi, beginTransforms, U = parseQDL(circuitFile)

 #Check for legal comm size
 assert(size%2 ==0)
 assert(size <= 2^N)

 #Determine how many states I am responsible for
 stride = Int((2^N)/size)

 #Initialize all local memories with zeros
 local_a = zeros(Complex, stride)
 local_a_prime = copy(local_a)

 #Determine my global start and end indices *******************TESTING ONLY
 #start = Int(rank * stride)
 #fin = Int((rank+1)*stride-1)

 #MORE TESTING:
 #@printf("N = %d\n", N)
 #@printf("Phi = %d\n", phi)
 #@printf("beginTransforms = %d\n", beginTransforms)

 #Broadcast N to slave nodes
 N_msg = [N]
 for procNum = 1:size-1
 MPI.Send(N_msg, procNum, CONTROL, comm)
 end
 else

 #Wait for control broadcast of N
 MPI.Recv!(N_msg, MASTER, CONTROL, comm)
 N = N_msg[1]

 #Determine how many states I am responsible for
 stride = Int((2^N)/size)

 #Initialize all local memories with zeros
 local_a = zeros(Complex, stride)
 local_a_prime = copy(local_a)

 #Determine my global start and end indices *******************TESTING ONLY
 #start = Int(rank * stride)
 #fin = Int((rank+1)*stride-1)
 end

 MPI.Barrier(comm)
 #Display the initial state
 if rank == MASTER
 procNum = div(phi, stride)
 offset = phi % stride

 @printf("I am the master node. N = %d. Classical state is: |%d>\n", N, phi)

 #Store the initial classical state in a_prime
 if procNum == MASTER
 local_a[offset+1] = 1.0
 else
 slaveStore(procNum, offset, 1.0, rank, comm)
 slaveSwap(rank, size, comm)
 end

 ## APPLY GATES HERE: ~~
 timer = 0.
 tic()

 parseTransforms(circuitFile, beginTransforms, N, U, stride, rank, size, comm, local_a, local_a_prime)

 #~~~~~~CASCADING HADAMARD CODE (from parallel_hadamard.jl)
 #=
 for i = 0:N-1
 #Place all qubits into superposition
 hadamard!(N,i,stride, rank, size, comm, local_a, local_a_prime)
 end

 for i = 0:N-1
 #Take all qubits out of superposition
 hadamard!(N,i,stride, rank, size, comm, local_a, local_a_prime)
 end

 =#
 timer += toq()
 @printf("Elapsed = %f\n", timer)

 @printf("From master's perspective, %d reads, %d writes and %d swaps were called\n", reads, stores, swaps)

 #End of simulation; tell the slaves to exit their loop
 offset, procNum = slaveExit(rank, size, comm)
 for i = 1:stride
 if local_a[i] != 0
 offset = i-1
 procNum = 0
 end
 end

 phi_fin = (procNum * stride) + offset
 @printf("Classical state's offset = %d, procNum = %d. final state = |%d>\n", offset, procNum, phi_fin)

 else
 #Slave nodes enter slave loop
 slaveLoop(local_a, local_a_prime, stride, rank, size, comm)
 end

 #Each node prints their local states to a .txt file
 filename = @sprintf("output/proc_%03d.txt", rank)
 fid = open(filename, "w")
 @printf(fid, "\n I am processor %d of %d. The global N is %d \n", rank, size, N)
 #@printf(fid, "I start at %d and finish at %d\n", start, fin) # **********************TESTING
 @printf(fid, "My states are: \n")
 println(fid, local_a)

 #cleanup
 close(fid)
 MPI.Barrier(comm)
 MPI.Finalize()
end

main()

16Sep_Fischer_James_Supplemental/simulator_s.jl

#Sequential universal quantum simulator (Version 99)
#James Fischer

#~~
QUANTUM GATES
#~~

function xgate(a, N, x)
 #Applies a Pauli-X gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # x, the index of the bit to which the X-gate is applied (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the X-gate is applied to the xth bit

 mask = (2^N - 1) $ (1<<(N-1-x)) #Compute bitmask
 a_prime = Array{Complex}(length(a))

 for i = 0: (2^N)-1

 #Compute boldbit based on index of x
 boldbit = (i >> (N - 1 - x)) & 1

 #Compute NOT of the boldbit
 if boldbit == 0
 antiBoldBit = 1
 elseif boldbit == 1
 antiBoldBit = 0
 end

 #Compute the read index
 index = ((i & mask) | (antiBoldBit << (N-1-x)))
 r = real(a[index+1])
 ima = imag(a[index+1])

 #Write new value to a_prime
 a_prime[i+1] = r+ima
 end
 return a_prime
end

function zgate(a, N, z)
 #Applies a Pauli-Z gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # z, the index of the bit to which the Z-gate is applied (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the Z-gate is applied to the zth bit

 mask = (2^N - 1) $ (1<<(N-1-z)) #Compute bitmask
 a_prime = Array{Complex}(length(a))

 for i = 0: (2^N)-1
 #Determine boldbit based on index of z
 boldbit = (i >> (N - 1 - z)) & 1
 index = ((i & mask) | (boldbit << (N-1-z)))
 if boldbit == 0
 r = real(a[index+1])
 ima = imag(a[index+1])
 a_prime[i+1] = r+ima
 elseif boldbit == 1
 r = real(a[index+1])
 ima = imag(a[index+1])
 a_prime[i+1] = -r-ima
 end
 end
 return a_prime
end

function sgate(a, N, s)
 #Applies a (pi/2) radian phase shift gate to the quantum system r
 #Applies an S gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # x, the index of the bit to which the gate is applied (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the S gate is applied to the zth bit

 mask = (2^N - 1) $ (1<<(N-1-s))
 a_prime = Array{Complex}(length(a))

 for i = 0: (2^N)-1
 boldbit = (i >> (N - 1 - s)) & 1
 index = ((i & mask) | (boldbit << (N-1-s)))

 if boldbit == 0
 r = real(a[index+1])
 ima = imag(a[index+1])
 a_prime[i+1] = r+ima

 elseif boldbit == 1
 r = imag(a[index+1])
 ima = real(a[index+1])*im
 a_prime[i+1] = -r + ima
 end

 end
 return a_prime
end

function phaseShift(a, N, t)
 #Applies a (pi/4) radian phase shift gate to the quantum system r
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # t, the index of the bit to which the gate is applied (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the S gate is applied to the tth bit

 mask = (2^N - 1) $ (1<<(N-1-t))
 scalar = 1/sqrt(2)
 a_prime = Array{Complex}(length(a))

 for i = 0: (2^N)-1
 boldbit = (i >> (N - 1 - t)) & 1
 index = ((i & mask) | (boldbit << (N-1-t)))
 if boldbit == 0
 a_prime[i+1] =a[index+1]

 elseif boldbit == 1
 r = real(a[index+1])
 ima = imag(a[index+1])
 a0 = (r - ima) * scalar
 a1 = (r + ima) * scalar * (im)
 a_prime[i+1] = a0 + a1

 end
 end
 #println("\n")
 #ketA(a_prime)
 return a_prime
end

function hadamard(a, N, h)
 #Applies a H-gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # h, the index of the bit to which the H-gate is applied (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the H-gate is applied to the hth bit

 scalar = 1/sqrt(2)
 mask = (2^N - 1) $ (1<<(N-1-h)) #Compute bitmask
 a_prime = Array{Complex}(length(a))

 for i = 0:(2^N)-1

 #Determine boldbit based on index of h
 boldbit = (i >> (N - 1 - h)) & 1

 if boldbit == 0
 a0 = (i & mask)
 a1 = (i & mask | (1<<(N-1-h)))
 a_prime[i+1] = (a[a0+1] + a[a1+1])*scalar

 elseif boldbit == 1
 a0 = (i & mask)
 a1 = (i & mask | (1<<(N-1-h)))
 a_prime[i+1] = (a[a0+1] - a[a1+1])*scalar
 end
 end
 #Uncomment to view state after each H transform:
 #println("\n")
 #ketA(a_prime)
 return a_prime
end

function measurement(a, N, M)
 #a is the state prior to measurement
 #M is the index of the bit being measured (0 based indexing)

 prob0 = 0
 prob1 = 0
 a_prime = Array{Complex}(length(a))
 myRand = rand()
 mask = (N - 1 - M)

 #Iterate through and compute the cumulative probabilities of measuring a 0 or 1
 for i = 0:2^N-1
 boldBit = (i >> mask) & 1
 if boldBit == 0
 prob0 += real(a[i+1])^2 + imag(a[i+1])^2
 elseif boldBit == 1
 prob1 += real(a[i+1])^2 + imag(a[i+1])^2
 end
 end

 if prob0 > myRand
 @printf("\nMEASUREMENT! Qubit %d = 0\n", M)
 else
 @printf("\nMEASUREMENT! Qubit %d = 1\n", M)
 end

 cumulativeProb = 0
 for i = 0:2^N-1
 boldBit = (i >> mask) & 1
 if (boldBit == 0) && (myRand < prob0)
 cumulativeProb += real(a[i+1])^2 + imag(a[i+1])^2
 end
 if (boldBit == 1) && (myRand > prob0)
 cumulativeProb += real(a[i+1])^2 + imag(a[i+1])^2
 end
 end

 probability = sqrt(1/cumulativeProb)

 for i = 0:2^N-1
 boldBit = (i >> mask) & 1
 if (boldBit == 0) && (myRand > prob0)
 a_prime[i+1] = 0 + 0im
 elseif (boldBit == 1) && (myRand < prob0)
 a_prime[i+1] = 0 + 0im
 else
 a_prime[i+1] = probability * real(a[i+1]) + probability * imag(a[i+1])
 end
 end
 return a_prime
end

function controlledNot(a, N, C, T)
 #Applies a C-NOT gate to the quantum system represented by state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # C, the index of the control bit (0th bit is the left-most bit)
 # T, the index of the target bit (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the C-NOT gate application

 a_prime = copy(a)

 for i = 0:((2^N)-1)

 controlQubit = (i >> (N - 1 - C)) & 1
 targetQubit = (i >> (N - 1 - T)) & 1

 if targetQubit == 0
 antiTarget = 1
 elseif targetQubit == 1
 antiTarget = 0
 end
 if controlQubit == 1
 mask = (2^N-1) $ (1 << (N-1-T))
 index = ((i & mask) | (antiTarget << (N-1-T)))+1

 a_prime[i+1] = a[index]
 end
 end
 #println("\n")
 #ketA(a_prime)
 return a_prime
end

function toffoli(a, N, C1, C2, T)
 #Applies a Toffoli gate to a quantum system represented by the state vector a
 #Inputs: a, state vector representing the initial state of the quantum system
 # N, number of qubits in the quantum system
 # C1, the index of the first control bit (0th bit is the left-most bit)
 # C2, the index of the second control bit (0th bit is the left-most bit)
 # T, the index of the target bit (0th bit is the left-most bit)
 #Outputs: a_prime, the state vector representing the quantum
 # system after the Toffoli gate application

 a_prime = copy(a)

 for i = 0:((2^N)-1)

 controlQubit1 = (i >> (N - 1 - C1)) & 1
 controlQubit2 = (i >> (N - 1 - C2)) & 1
 targetQubit = (i >> (N - 1 - T)) & 1

 if targetQubit == 0
 targetQubitNot = 1
 elseif targetQubit == 1
 targetQubitNot = 0
 end
 if (controlQubit1 == 1) && (controlQubit2 == 1)

 mask = (2^N-1) $ (1 << (N-1-T))
 index = ((i & mask) | (targetQubitNot << (N-1-T)))+1
 a_prime[i+1] = a[index]
 end
 end
 return a_prime
end

function blackBox(a, U)
 #Apply unitary "black box" function U to the state vector
 #Inputs: a, the state vector
 # U, user-defined unitary matrix
 #Output: a_prime = U*a

 a_prime = U * a

 return a_prime
end

#~~
HELPER FUNCTIONS:
#~~

function generateA(phi, N)
 #Function generates the state vector of a quantum system given by phi. Used
 # before applying any quantum gates to the system.
 #Inputs: N, the number of qubits in the quantum register
 # phi, initial state of a quantum register (in either bytes or Int format)
 #Usage: An initial quantum register of three qubits all equal to 1
 # would be N=3, phi= 0b111 or phi = 7
 #Outputs: A, a vector of length 2^N representing the state of the quantum system

 A = zeros(Complex, 2^N)
 A[phi+1] = 1
 return A
end

function ketA(A)
 #Function prints the ket notation of the state vector A
 #Inputs: A, state vector of a quantum system
 #Outputs: ket notation of A (to stdout)

 N = length(A)

 for i = 1:N
 if A[i] != 0+0im
 r = real(A[i])
 ima = imag(A[i])
 @printf("|%d> = %f + %f\n",i-1, r, ima)
 end
 end
end

#~~
PARSER:
#~~
function parseQDL(file)
 #Function parses a QDL file
 #Inputs: file, (ASCIIstring) name of the QDL file to be parsed
 #Outputs: ket notation of A the final state (to stdout, using ketA() function)

 #Open the QDL file and initialize
 filename = open(file)
 body = readlines(filename)

 beginTransforms = 999
 transformNumber = 0
 N = 0
 phi = Array{Int}
 phi_str = "0b"
 blackbox = false
 U = Array{Int,Int}
 completeU = false
 dim = 0

 buffer0 = Array{Complex}(1)
 buffer1 = similar(buffer0)

 #Iterate through each line of the QDL file
 for lineNumber in 1:length(body)

 splitLine = split(body[lineNumber])

 #Determine N (MUST be on line 1):
 if lineNumber == 1
 N = parse(Int, splitLine[end])

 #Create two buffers for state vector storage
 buffer0 = Array{Complex}(2^N)
 buffer1 = similar(buffer0)
 end

 if (lineNumber == 2) && (splitLine[2] == "U") #Black-box function present

 dim = parse(Int, splitLine[end])
 U = zeros(Complex, dim, dim)

 for j = 3:dim+2
 U_line = split(body[j])
 for k = 1:dim
 val = parse(Int, U_line[k])
 U[j-2,k]=val
 end
 end

 phi_line = split(body[lineNumber+dim+2])

 #phi = Array{int}(length(phi_line))

 for k = 1:length(phi_line)
 phi_str *= phi_line[k]
 phi = parse(Int, phi_str)
 end

 #Set the first buffer equal to initial quantum state & display
 buffer0 = generateA(phi,N)
 @printf("Initial State: \n")
 ketA(buffer0)

 beginTransforms = dim+4
 continue

 elseif (lineNumber == 2) && (splitLine[2] != "U") #No black-box

 phi_line = split(body[lineNumber+1])

 #phi = Array{Int}(length(phi_line))

 for k = 1:length(phi_line)
 phi_str *= phi_line[k]
 phi = parse(Int, phi_str)
 end

 #Set the first buffer equal to initial quantum state & display
 buffer0 = generateA(phi,N)
 @printf("Initial State: \n")
 ketA(buffer0)
 beginTransforms = 4
 continue
 end

 if lineNumber > beginTransforms

 if splitLine[1] == "Define"
 transformNumber +=1
 continue
 else

 #Determine which quantum gate to apply
 transform = parseGates(splitLine)

 #Apply the quantum gate to the first buffer
 #Store result in second buffer
 buffer1 = performTransform(buffer0, N, transform, U)
 end

 #Swap the pointer
 buffer0 = buffer1

 end

 end
 close(filename)
 @printf("Final State: \n")
 return ketA(buffer0)
end

function parseGates(splitLine)
 #Function determines what transform occurs in a given QDL line
 #Inputs: splitLine, an array of ASCII strings split the SPACE character
 #Outputs: transform, a 2-tuple consisting of:
 # [1] a char indicating the type of gate to apply
 # [2] indices of the qubits to which the gates are applied
 # (Int for single qubit gates, tuple for multi-qubit gates)

 #Hadamard gate. Parse type and index of H-gate
 if "H" in splitLine
 h = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "H"
 h = i-1
 end
 end
 transform = ("H", h)

 #Cnot gate. Parse type and indices of C & T bits
 elseif "Control" in splitLine
 C = -1
 T = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "Control"
 C = i-1
 elseif splitLine[i] == "Target"
 T = i-1
 end
 end
 transform = ("CNOT", (C,T))

 #Toffoli gate. parse type and indices of C1, C2, & T bits
 elseif "UT1" in splitLine
 T = -1
 C1 = -1
 C2 = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "UT1"
 T = i-1
 elseif splitLine[i] == "UT2"
 C1 = i-1
 elseif splitLine[i] == "UT3"
 C2 = i-1
 end
 end
 transform = ("Toffoli", (C1, C2, T))

 #Pauli-X gate. Parse type and index of X-gate
 elseif "X" in splitLine
 x = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "X"
 x = i-1
 end
 end
 transform = ("X", x)

 #Pauli-Z gate. Parse type and index of Z-gate
 elseif "Z" in splitLine
 z = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "Z"
 z = i-1
 end
 end
 transform = ("Z", z)

 #S gate. Parse type and index of Z-gate
 elseif "S" in splitLine
 s = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "S"
 s = i-1
 end
 end
 transform = ("S", s)

 #Phase Shift (phi = pi/2) gate. Parse type and index of Z-gate
 elseif "T" in splitLine
 t = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "T"
 t = i-1
 end
 end
 transform = ("T", t)

 #Measurement gate. Parse type and index of measured qubit
 elseif "M" in splitLine
 m = -1
 for i = 1:length(splitLine)
 if splitLine[i] == "M"
 m = i-1
 end
 end
 transform = ("M", m)

 #Apply unitary transform matrix
 elseif "U" in splitLine
 transform = ("U")
 end

 return transform
end

function performTransform(a, N, transform, U)
 #Function performs the indicated type of transform upon quantum state a of size N
 # calls the function associated with the desired quantum gate
 #Inputs: a, state vector representing the quantum system
 # N, size of the quantum system
 # transform, indicates type of quantum gate and associated indices
 #Outputs: buffer, a state vector representing the quantum system after applying
 # the applicable gate to the associated qubit

 buffer = false

 if transform[1] == "H" #Hadamard
 h = transform[2]
 buffer = hadamard(a, N, h)
 elseif transform[1] == "CNOT" #CNOT
 C = transform[2][1]
 T = transform[2][2]
 buffer = controlledNot(a, N, C, T)
 elseif transform[1] == "Toffoli" #Toffoli
 C1 = transform[2][1]
 C2 = transform[2][2]
 T = transform[2][3]
 buffer = toffoli(a, N, C1, C2, T)
 elseif transform[1] == "X" #Pauli-X
 x = transform[2]
 buffer = xgate(a, N, x)
 elseif transform[1] == "Z" #Pauli-Z
 z = transform[2]
 buffer = zgate(a, N, z)
 elseif transform[1] == "S" #S gate
 s = transform[2]
 buffer = sgate(a, N, s)
 elseif transform[1] == "T" #Pi/2 phase shift
 t = transform[2]
 buffer = phaseShift(a, N, t)
 elseif transform[1] == "M" #Measurement
 m = transform[2]
 buffer = measurement(a, N, m)
 elseif transform == "U" #Unitary transform matrix
 buffer = blackBox(a, U)
 end
 return buffer
end

#~~
TO DO LIST:
#~~

-Verbose mode
-Ensure thorough commenting

#~~
MAIN
#~~

function main()

 if length(ARGS) != 1
 error("Usage: julia simulator.jl [FN], where [FN] is the filename of the QDL file")
 else

 filename = ARGS[1]

 let
 oldSTDOUT = STDOUT
 (outread, outwrite) = redirect_stdout()

 @printf("Compilation run:")
 @time parseQDL(filename)

 close(outread)
 close(outwrite)
 redirect_stdout(oldSTDOUT)
 end

 @printf("\nPerformance run:\n")
 @time parseQDL(filename)
 end
end

main()

16Sep_Fischer_James_Supplemental/output/proc_000.txt

 I am processor 0 of 2. The global N is 2
My states are:
Complex[0.7071067811865475 + 0.0im,-0.7071067811865475 + 0.0im]

16Sep_Fischer_James_Supplemental/output/proc_001.txt

 I am processor 1 of 2. The global N is 2
My states are:
Complex[0.0 + 0.0im,0.0 + 0.0im]

16Sep_Fischer_James_Supplemental/circuits/._.DS_Store

16Sep_Fischer_James_Supplemental/circuits/.DS_Store

16Sep_Fischer_James_Supplemental/circuits/._bitflip

16Sep_Fischer_James_Supplemental/circuits/bitflip

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I I I I I I I
Define Transform4
I I I H I I I I I
Define Transform5
I I I I I I H I I
Define Transform6
Control Target I I I I I I I
Define Transform7
I I I Control Target I I I I
Define Transform8
I I I I I I Control Target I
Define Transform9
Control I Target I I I I I I
Define Transform10
I I I Control I Target I I I
Define Transform11
I I I I I I Control I Target
Define Transform12
X I I I I I I I I
Define Transform13
Control I Target I I I I I I
Define Transform14
I I I Control I Target I I I
Define Transform15
I I I I I I Control I Target
Define Transform16
Control Target I I I I I I I
Define Transform17
I I I Control Target I I I I
Define Transform18
I I I I I I Control Target I
Define Transform19
UT1 UT2 UT3 I I I I I I
Define Transform20
I I I UT1 UT2 UT3 I I I
Define Transform21
I I I I I I UT1 UT2 UT3
Define Transform22
H I I I I I I I I
Define Transform23
I I I H I I I I I
Define Transform24
I I I I I I H I I
Define Transform25
Control I I I I I Target I I
Define Transform26
Control I I Target I I I I I
Define Transform27
UT1 I I UT2 I I UT3 I I

16Sep_Fischer_James_Supplemental/circuits/bitflip_0.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i
|8> 0.0+0.0i
|9> 0.0+0.0i
|10> 0.0+0.0i
|11> 0.0+0.0i
|12> 0.0+0.0i
|13> 0.0+0.0i
|14> 0.0+0.0i
|15> 0.0+0.0i
|16> 0.0+0.0i
|17> 0.0+0.0i
|18> 0.0+0.0i
|19> 0.0+0.0i
|20> 0.0+0.0i
|21> 0.0+0.0i
|22> 0.0+0.0i
|23> 0.0+0.0i
|24> 0.0+0.0i
|25> 0.0+0.0i
|26> 0.0+0.0i
|27> 0.0+0.0i
|28> 0.0+0.0i
|29> 0.0+0.0i
|30> 0.0+0.0i
|31> 0.0+0.0i
|32> 0.0+0.0i
|33> 0.0+0.0i
|34> 0.0+0.0i
|35> 0.0+0.0i
|36> 0.0+0.0i
|37> 0.0+0.0i
|38> 0.0+0.0i
|39> 0.0+0.0i
|40> 0.0+0.0i
|41> 0.0+0.0i
|42> 0.0+0.0i
|43> 0.0+0.0i
|44> 0.0+0.0i
|45> 0.0+0.0i
|46> 0.0+0.0i
|47> 0.0+0.0i
|48> 0.0+0.0i
|49> 0.0+0.0i
|50> 0.0+0.0i
|51> 0.0+0.0i
|52> 0.0+0.0i
|53> 0.0+0.0i
|54> 0.0+0.0i
|55> 0.0+0.0i
|56> 0.0+0.0i
|57> 0.0+0.0i
|58> 0.0+0.0i
|59> 0.0+0.0i
|60> 0.0+0.0i
|61> 0.0+0.0i
|62> 0.0+0.0i
|63> 0.0+0.0i
|64> 0.0+0.0i
|65> 0.0+0.0i
|66> 0.0+0.0i
|67> 0.0+0.0i
|68> 0.0+0.0i
|69> 0.0+0.0i
|70> 0.0+0.0i
|71> 0.0+0.0i
|72> 0.0+0.0i
|73> 0.0+0.0i
|74> 0.0+0.0i
|75> 0.0+0.0i
|76> 0.0+0.0i
|77> 0.0+0.0i
|78> 0.0+0.0i
|79> 0.0+0.0i
|80> 0.0+0.0i
|81> 0.0+0.0i
|82> 0.0+0.0i
|83> 0.0+0.0i
|84> 0.0+0.0i
|85> 0.0+0.0i
|86> 0.0+0.0i
|87> 0.0+0.0i
|88> 0.0+0.0i
|89> 0.0+0.0i
|90> 0.0+0.0i
|91> 0.0+0.0i
|92> 0.0+0.0i
|93> 0.0+0.0i
|94> 0.0+0.0i
|95> 0.0+0.0i
|96> 0.0+0.0i
|97> 0.0+0.0i
|98> 0.0+0.0i
|99> 0.0+0.0i
|100> 0.0+0.0i
|101> 0.0+0.0i
|102> 0.0+0.0i
|103> 0.0+0.0i
|104> 0.0+0.0i
|105> 0.0+0.0i
|106> 0.0+0.0i
|107> 0.0+0.0i
|108> 0.0+0.0i
|109> 0.0+0.0i
|110> 0.0+0.0i
|111> 0.0+0.0i
|112> 0.0+0.0i
|113> 0.0+0.0i
|114> 0.0+0.0i
|115> 0.0+0.0i
|116> 0.0+0.0i
|117> 0.0+0.0i
|118> 0.0+0.0i
|119> 0.0+0.0i
|120> 0.0+0.0i
|121> 0.0+0.0i
|122> 0.0+0.0i
|123> 0.0+0.0i
|124> 0.0+0.0i
|125> 0.0+0.0i
|126> 0.0+0.0i
|127> 0.0+0.0i
|128> 0.0+0.0i
|129> 0.0+0.0i
|130> 0.0+0.0i
|131> 0.0+0.0i
|132> 0.0+0.0i
|133> 0.0+0.0i
|134> 0.0+0.0i
|135> 0.0+0.0i
|136> 0.0+0.0i
|137> 0.0+0.0i
|138> 0.0+0.0i
|139> 0.0+0.0i
|140> 0.0+0.0i
|141> 0.0+0.0i
|142> 0.0+0.0i
|143> 0.0+0.0i
|144> 0.0+0.0i
|145> 0.0+0.0i
|146> 0.0+0.0i
|147> 0.0+0.0i
|148> 0.0+0.0i
|149> 0.0+0.0i
|150> 0.0+0.0i
|151> 0.0+0.0i
|152> 0.0+0.0i
|153> 0.0+0.0i
|154> 0.0+0.0i
|155> 0.0+0.0i
|156> 0.0+0.0i
|157> 0.0+0.0i
|158> 0.0+0.0i
|159> 0.0+0.0i
|160> 0.0+0.0i
|161> 0.0+0.0i
|162> 0.0+0.0i
|163> 0.0+0.0i
|164> 0.0+0.0i
|165> 0.0+0.0i
|166> 0.0+0.0i
|167> 0.0+0.0i
|168> 0.0+0.0i
|169> 0.0+0.0i
|170> 0.0+0.0i
|171> 0.0+0.0i
|172> 0.0+0.0i
|173> 0.0+0.0i
|174> 0.0+0.0i
|175> 0.0+0.0i
|176> 0.0+0.0i
|177> 0.0+0.0i
|178> 0.0+0.0i
|179> 0.0+0.0i
|180> 0.0+0.0i
|181> 0.0+0.0i
|182> 0.0+0.0i
|183> 0.0+0.0i
|184> 0.0+0.0i
|185> 0.0+0.0i
|186> 0.0+0.0i
|187> 0.0+0.0i
|188> 0.0+0.0i
|189> 0.0+0.0i
|190> 0.0+0.0i
|191> 0.0+0.0i
|192> 0.0+0.0i
|193> 0.0+0.0i
|194> 0.0+0.0i
|195> 0.0+0.0i
|196> 0.0+0.0i
|197> 0.0+0.0i
|198> 0.0+0.0i
|199> 0.0+0.0i
|200> 0.0+0.0i
|201> 0.0+0.0i
|202> 0.0+0.0i
|203> 0.0+0.0i
|204> 0.0+0.0i
|205> 0.0+0.0i
|206> 0.0+0.0i
|207> 0.0+0.0i
|208> 0.0+0.0i
|209> 0.0+0.0i
|210> 0.0+0.0i
|211> 0.0+0.0i
|212> 0.0+0.0i
|213> 0.0+0.0i
|214> 0.0+0.0i
|215> 0.0+0.0i
|216> 0.0+0.0i
|217> 0.0+0.0i
|218> 0.0+0.0i
|219> 0.0+0.0i
|220> 0.0+0.0i
|221> 0.0+0.0i
|222> 0.0+0.0i
|223> 0.0+0.0i
|224> 0.0+0.0i
|225> 0.0+0.0i
|226> 0.0+0.0i
|227> 0.0+0.0i
|228> 0.0+0.0i
|229> 0.0+0.0i
|230> 0.0+0.0i
|231> 0.0+0.0i
|232> 0.0+0.0i
|233> 0.0+0.0i
|234> 0.0+0.0i
|235> 0.0+0.0i
|236> 0.0+0.0i
|237> 0.0+0.0i
|238> 0.0+0.0i
|239> 0.0+0.0i
|240> 0.0+0.0i
|241> 0.0+0.0i
|242> 0.0+0.0i
|243> 0.0+0.0i
|244> 0.0+0.0i
|245> 0.0+0.0i
|246> 0.0+0.0i
|247> 0.0+0.0i
|248> 0.0+0.0i
|249> 0.0+0.0i
|250> 0.0+0.0i
|251> 0.0+0.0i
|252> 0.0+0.0i
|253> 0.0+0.0i
|254> 0.0+0.0i
|255> 0.0+0.0i
|256> 0.0+0.0i
|257> 0.0+0.0i
|258> 0.0+0.0i
|259> 0.0+0.0i
|260> 0.0+0.0i
|261> 0.0+0.0i
|262> 0.0+0.0i
|263> 0.0+0.0i
|264> 0.0+0.0i
|265> 0.0+0.0i
|266> 0.0+0.0i
|267> 0.0+0.0i
|268> 0.0+0.0i
|269> 0.0+0.0i
|270> 0.0+0.0i
|271> 0.0+0.0i
|272> 0.0+0.0i
|273> 0.0+0.0i
|274> 0.0+0.0i
|275> 0.0+0.0i
|276> 0.0+0.0i
|277> 0.0+0.0i
|278> 0.0+0.0i
|279> 0.0+0.0i
|280> 0.0+0.0i
|281> 0.0+0.0i
|282> 0.0+0.0i
|283> 0.0+0.0i
|284> 0.0+0.0i
|285> 0.0+0.0i
|286> 0.0+0.0i
|287> 0.0+0.0i
|288> 0.0+0.0i
|289> 0.0+0.0i
|290> 0.0+0.0i
|291> 0.0+0.0i
|292> 0.0+0.0i
|293> 0.0+0.0i
|294> 0.0+0.0i
|295> 0.0+0.0i
|296> 0.0+0.0i
|297> 0.0+0.0i
|298> 0.0+0.0i
|299> 0.0+0.0i
|300> 0.0+0.0i
|301> 0.0+0.0i
|302> 0.0+0.0i
|303> 0.0+0.0i
|304> 0.0+0.0i
|305> 0.0+0.0i
|306> 0.0+0.0i
|307> 0.0+0.0i
|308> 0.0+0.0i
|309> 0.0+0.0i
|310> 0.0+0.0i
|311> 0.0+0.0i
|312> 0.0+0.0i
|313> 0.0+0.0i
|314> 0.0+0.0i
|315> 0.0+0.0i
|316> 0.0+0.0i
|317> 0.0+0.0i
|318> 0.0+0.0i
|319> 0.0+0.0i
|320> 0.0+0.0i
|321> 0.0+0.0i
|322> 0.0+0.0i
|323> 0.0+0.0i
|324> 0.0+0.0i
|325> 0.0+0.0i
|326> 0.0+0.0i
|327> 0.0+0.0i
|328> 0.0+0.0i
|329> 0.0+0.0i
|330> 0.0+0.0i
|331> 0.0+0.0i
|332> 0.0+0.0i
|333> 0.0+0.0i
|334> 0.0+0.0i
|335> 0.0+0.0i
|336> 0.0+0.0i
|337> 0.0+0.0i
|338> 0.0+0.0i
|339> 0.0+0.0i
|340> 0.0+0.0i
|341> 0.0+0.0i
|342> 0.0+0.0i
|343> 0.0+0.0i
|344> 0.0+0.0i
|345> 0.0+0.0i
|346> 0.0+0.0i
|347> 0.0+0.0i
|348> 0.0+0.0i
|349> 0.0+0.0i
|350> 0.0+0.0i
|351> 0.0+0.0i
|352> 0.0+0.0i
|353> 0.0+0.0i
|354> 0.0+0.0i
|355> 0.0+0.0i
|356> 0.0+0.0i
|357> 0.0+0.0i
|358> 0.0+0.0i
|359> 0.0+0.0i
|360> 0.0+0.0i
|361> 0.0+0.0i
|362> 0.0+0.0i
|363> 0.0+0.0i
|364> 0.0+0.0i
|365> 0.0+0.0i
|366> 0.0+0.0i
|367> 0.0+0.0i
|368> 0.0+0.0i
|369> 0.0+0.0i
|370> 0.0+0.0i
|371> 0.0+0.0i
|372> 0.0+0.0i
|373> 0.0+0.0i
|374> 0.0+0.0i
|375> 0.0+0.0i
|376> 0.0+0.0i
|377> 0.0+0.0i
|378> 0.0+0.0i
|379> 0.0+0.0i
|380> 0.0+0.0i
|381> 0.0+0.0i
|382> 0.0+0.0i
|383> 0.0+0.0i
|384> 0.0+0.0i
|385> 0.0+0.0i
|386> 0.0+0.0i
|387> 0.0+0.0i
|388> 0.0+0.0i
|389> 0.0+0.0i
|390> 0.0+0.0i
|391> 0.0+0.0i
|392> 0.0+0.0i
|393> 0.0+0.0i
|394> 0.0+0.0i
|395> 0.0+0.0i
|396> 0.0+0.0i
|397> 0.0+0.0i
|398> 0.0+0.0i
|399> 0.0+0.0i
|400> 0.0+0.0i
|401> 0.0+0.0i
|402> 0.0+0.0i
|403> 0.0+0.0i
|404> 0.0+0.0i
|405> 0.0+0.0i
|406> 0.0+0.0i
|407> 0.0+0.0i
|408> 0.0+0.0i
|409> 0.0+0.0i
|410> 0.0+0.0i
|411> 0.0+0.0i
|412> 0.0+0.0i
|413> 0.0+0.0i
|414> 0.0+0.0i
|415> 0.0+0.0i
|416> 0.0+0.0i
|417> 0.0+0.0i
|418> 0.0+0.0i
|419> 0.0+0.0i
|420> 0.0+0.0i
|421> 0.0+0.0i
|422> 0.0+0.0i
|423> 0.0+0.0i
|424> 0.0+0.0i
|425> 0.0+0.0i
|426> 0.0+0.0i
|427> 0.0+0.0i
|428> 0.0+0.0i
|429> 0.0+0.0i
|430> 0.0+0.0i
|431> 0.0+0.0i
|432> 0.0+0.0i
|433> 0.0+0.0i
|434> 0.0+0.0i
|435> 0.0+0.0i
|436> 0.0+0.0i
|437> 0.0+0.0i
|438> 0.0+0.0i
|439> 0.0+0.0i
|440> 0.0+0.0i
|441> 0.0+0.0i
|442> 0.0+0.0i
|443> 0.0+0.0i
|444> 0.0+0.0i
|445> 0.0+0.0i
|446> 0.0+0.0i
|447> 0.0+0.0i
|448> 1.000000000000004+0.0i
|449> 0.0+0.0i
|450> 0.0+0.0i
|451> 0.0+0.0i
|452> 0.0+0.0i
|453> 0.0+0.0i
|454> 0.0+0.0i
|455> 0.0+0.0i
|456> 0.0+0.0i
|457> 0.0+0.0i
|458> 0.0+0.0i
|459> 0.0+0.0i
|460> 0.0+0.0i
|461> 0.0+0.0i
|462> 0.0+0.0i
|463> 0.0+0.0i
|464> 0.0+0.0i
|465> 0.0+0.0i
|466> 0.0+0.0i
|467> 0.0+0.0i
|468> 0.0+0.0i
|469> 0.0+0.0i
|470> 0.0+0.0i
|471> 0.0+0.0i
|472> 0.0+0.0i
|473> 0.0+0.0i
|474> 0.0+0.0i
|475> 0.0+0.0i
|476> 0.0+0.0i
|477> 0.0+0.0i
|478> 0.0+0.0i
|479> 0.0+0.0i
|480> 0.0+0.0i
|481> 0.0+0.0i
|482> 0.0+0.0i
|483> 0.0+0.0i
|484> 0.0+0.0i
|485> 0.0+0.0i
|486> 0.0+0.0i
|487> 0.0+0.0i
|488> 0.0+0.0i
|489> 0.0+0.0i
|490> 0.0+0.0i
|491> 0.0+0.0i
|492> 0.0+0.0i
|493> 0.0+0.0i
|494> 0.0+0.0i
|495> 0.0+0.0i
|496> 0.0+0.0i
|497> 0.0+0.0i
|498> 0.0+0.0i
|499> 0.0+0.0i
|500> 0.0+0.0i
|501> 0.0+0.0i
|502> 0.0+0.0i
|503> 0.0+0.0i
|504> 0.0+0.0i
|505> 0.0+0.0i
|506> 0.0+0.0i
|507> 0.0+0.0i
|508> 0.0+0.0i
|509> 0.0+0.0i
|510> 0.0+0.0i
|511> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/bitflip_1.out

16Sep_Fischer_James_Supplemental/circuits/cnot

Define N 2
Define Phi0
1 0
Define Transform1
Control Target

16Sep_Fischer_James_Supplemental/circuits/cnot2

Define N 3
Define Phi0
1 0 0
Define Transform1
Control I Target

16Sep_Fischer_James_Supplemental/circuits/._cnot3

16Sep_Fischer_James_Supplemental/circuits/cnot3

Define N 8
Define Phi0
1 0 0 0 0 0 0 0
Define Transform1
Control I I I I I I Target

16Sep_Fischer_James_Supplemental/circuits/cnot_0.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 1.0+0.0i
|3> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/cnot_1.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 1.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._cnot_test

16Sep_Fischer_James_Supplemental/circuits/cnot_test

Define N 3
Define Phi0
1 1 1
Define Transform1
Control Target I

16Sep_Fischer_James_Supplemental/circuits/._deutsch

16Sep_Fischer_James_Supplemental/circuits/deutsch

Define N 2
Define U 4
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
Define Phi0
0 1
Define Transform1
H I
Define Transform2
I H
Define Transform3
U
Define Transform4
H I
Define Transform5
M I

16Sep_Fischer_James_Supplemental/circuits/._deutsch2

16Sep_Fischer_James_Supplemental/circuits/deutsch2

Define N 2 # This is a 2-qubit system
Define U 4 # Define the 4x4 matrix U
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
Define Phi0
0 1 # The initial value of the top and bottom qubits are 0 and 1, respectively
Define Transform1
H H # Apply Hadamard gates to both qubits
Define Transform2
U # Apply 4x4 U gate to the 2-qubit system
Define Transform3
H I # Apply Hadamard gate to upper qubit; Apply Identity gate to lower qubit
Define Transform4
M I # Apply Measurement gate to upper qubit; Apply Identity gate to lower qubit

16Sep_Fischer_James_Supplemental/circuits/._deutsch3

16Sep_Fischer_James_Supplemental/circuits/deutsch3

Define N 2 # This is a 2-qubit system
Define U 4 # Define the 4x4 matrix U
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
Define Phi0
0 1 # The initial value of the top and bottom qubits are 0 and 1, respectively
Define Transform1
H H # Apply Hadamard gates to both qubits
Define Transform2
U # Apply 4x4 U gate to the 2-qubit system
Define Transform3
H I # Apply Hadamard gate to upper qubit; Apply Identity gate to lower qubit
Define Transform4
M I # Apply Measurement gate to upper qubit; Apply Identity gate to lower qubit

16Sep_Fischer_James_Supplemental/circuits/._deutsch4

16Sep_Fischer_James_Supplemental/circuits/deutsch4

Define N 2 # This is a 2-qubit system
Define U 4 # Define the 4x4 matrix U
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0
Define Phi0
0 1 # The initial value of the top and bottom qubits are 0 and 1, respectively
Define Transform1
H H # Apply Hadamard gates to both qubits
Define Transform2
U # Apply 4x4 U gate to the 2-qubit system
Define Transform3
H I # Apply Hadamard gate to upper qubit; Apply Identity gate to lower qubit
Define Transform4
M I # Apply Measurement gate to upper qubit; Apply Identity gate to lower qubit

16Sep_Fischer_James_Supplemental/circuits/deutsch_0.out

|0> 0.0+0.0i
|1> 1.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/deutsch_1.out

|0> 0.0+0.0i
|1> 0.707106781186548+0.0i
|2> 0.0+0.0i
|3> 0.707106781186548+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.707106781186548+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/deutsch_2.out

|0> 0.5000000000000007+0.0i
|1> -0.5000000000000007+0.0i
|2> 0.5000000000000007+0.0i
|3> -0.5000000000000007+0.0i
=================
0.707106781186548+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i
0.707106781186548+0.0i -0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.707106781186548+0.0i
0.0+0.0i -0.0+0.0i 0.707106781186548+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/deutsch_3.out

|0> -0.5000000000000007+0.0i
|1> 0.5000000000000007+0.0i
|2> 0.5000000000000007+0.0i
|3> -0.5000000000000007+0.0i
=================
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/deutsch_4.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> -0.7071067811865489+0.0i
|3> 0.7071067811865489+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.707106781186548+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/deutsch_5.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> -0.7071067811865475+0.0i
|3> 0.7071067811865475+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._deutsch_comments

16Sep_Fischer_James_Supplemental/circuits/deutsch_comments

Define N 2 # This is a 2-qubit system
Define U 4 # Define the 4x4 matrix U
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
Define Phi0
0 1 # The initial value of the top and bottom qubits are 0 and 1, respectively
Define Transform1
H H # Apply Hadamard gates to both qubits
Define Transform2
U # Apply 4x4 U gate to the 2-qubit system
Define Transform3
H I # Apply Hadamard gate to upper qubit; Apply Identity gate to lower qubit
Define Transform4
M I # Apply Measurement gate to upper qubit; Apply Identity gate to lower qubit

16Sep_Fischer_James_Supplemental/circuits/._deutsch_test

16Sep_Fischer_James_Supplemental/circuits/deutsch_test

Define N 2
Define U 4
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
Define Phi0
0 1
Define Transform1
U

16Sep_Fischer_James_Supplemental/circuits/._dj

16Sep_Fischer_James_Supplemental/circuits/dj

Define N 3
Define U 8
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
Define Phi0
0 0 1
Define Transform1
H I I
Define Transform2
I H I
Define Transform3
I I H
Define Transform4
U
Define Transform5
H I I
Define Transform6
I H I
Define Transform6
M I I
Define Transform7
I M I

16Sep_Fischer_James_Supplemental/circuits/._dj2

16Sep_Fischer_James_Supplemental/circuits/dj2

Define N 3 # This is a 3-qubit system
Define U 8
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
Define Phi0
0 0 1
Define Transform1
H H H
Define Transform2
U
Define Transform3
H H I
Define Transform4
M M I

16Sep_Fischer_James_Supplemental/circuits/._dj3

16Sep_Fischer_James_Supplemental/circuits/dj3

Define N 3 # This is a 3-qubit system
Define U 8
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
Define Phi0
0 0 1
Define Transform1
H H H
Define Transform2
U
Define Transform3
H H I
Define Transform4
M M I

16Sep_Fischer_James_Supplemental/circuits/._dj4

16Sep_Fischer_James_Supplemental/circuits/dj4

Define N 3 # This is a 3-qubit system
Define U 8
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
Define Phi0
0 0 1
Define Transform1
H H H
Define Transform2
U
Define Transform3
H H I
Define Transform4
M M I

16Sep_Fischer_James_Supplemental/circuits/._entangle

16Sep_Fischer_James_Supplemental/circuits/entangle

Define N 2
Define Phi0
0 0
Define Transform1
H I
Define Transform2
CNOT

16Sep_Fischer_James_Supplemental/circuits/entanglement

Define N 2
Define Phi0
0 0
Define Transform1
H I
Define Transform2
Control Target

16Sep_Fischer_James_Supplemental/circuits/._grover

16Sep_Fischer_James_Supplemental/circuits/grover

Define N 4
Define U 16
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Define V 8
-0.75 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.25 -0.75 0.25 0.25 0.25 0.25 0.25 0.25
0.25 0.25 -0.75 0.25 0.25 0.25 0.25 0.25
0.25 0.25 0.25 -0.75 0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25 -0.75 0.25 0.25 0.25
0.25 0.25 0.25 0.25 0.25 -0.75 0.25 0.25
0.25 0.25 0.25 0.25 0.25 0.25 -0.75 0.25
0.25 0.25 0.25 0.25 0.25 0.25 0.25 -0.75
Define Phi0
0 0 0 1
Define Transform1
H H H I
Define Transform2
I I I H
Define Transform3
U
Define Transform4
V I
Define Transform5
U
Define Transform5
V I
Define Transform6
M M M I

16Sep_Fischer_James_Supplemental/circuits/._hadamard

16Sep_Fischer_James_Supplemental/circuits/hadamard

Define N 4
Define Phi0
1 1 1 1
Define Transform1
H H H I

16Sep_Fischer_James_Supplemental/circuits/._hadamard16

16Sep_Fischer_James_Supplemental/circuits/hadamard16

Define N 16
Define Phi0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Define Transform1
H I I I I I I I I I I I I I I I
Define Transform2
I H I I I I I I I I I I I I I I
Define Transform3
I I H I I I I I I I I I I I I I
Define Transform4
I I I H I I I I I I I I I I I I
Define Transform5
I I I I H I I I I I I I I I I I
Define Transform6
I I I I I H I I I I I I I I I I
Define Transform7
I I I I I I H I I I I I I I I I
Define Transform8
I I I I I I I H I I I I I I I I
Define Transform9
H I I I I I I I H I I I I I I I
Define Transform10
I I I I I I I I I H I I I I I I
Define Transform11
I I I I I I I I I I H I I I I I
Define Transform12
I I I I I I I I I I I H I I I I
Define Transform13
I I I I I I I I I I I I H I I I
Define Transform14
I I I I I I I I I I I I I H I I
Define Transform15
I I I I I I I I I I I I I I H I
Define Transform16
I I I I I I I I I I I I I I I H
Define Transform17
I I I I I I I I I I I I I I I H
Define Transform18
I I I I I I I I I I I I I I H I
Define Transform19
I I I I I I I I I I I I I H I I
Define Transform20
I I I I I I I I I I I I H I I I
Define Transform21
I I I I I I I I I I I H I I I I
Define Transform22
I I I I I I I I I I H I I I I I
Define Transform23
I I I I I I I I I H I I I I I I
Define Transform24
I I I I I I I I H I I I I I I I
Define Transform25
I I I I I I I H I I I I I I I I
Define Transform26
I I I I I I H I I I I I I I I I
Define Transform27
I I I I I H I I I I I I I I I I
Define Transform28
I I I I H I I I I I I I I I I I
Define Transform29
I I I H I I I I I I I I I I I I
Define Transform30
I I H I I I I I I I I I I I I I
Define Transform31
I H I I I I I I I I I I I I I I
Define Transform32
H I I I I I I I I I I I I I I I

16Sep_Fischer_James_Supplemental/circuits/._hadamard17

16Sep_Fischer_James_Supplemental/circuits/hadamard17

Define N 17
Define Phi0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Define Transform1
H I I I I I I I I I I I I I I I I
Define Transform2
I H I I I I I I I I I I I I I I I
Define Transform3
I I H I I I I I I I I I I I I I I
Define Transform4
I I I H I I I I I I I I I I I I I
Define Transform5
I I I I H I I I I I I I I I I I I
Define Transform6
I I I I I H I I I I I I I I I I I
Define Transform7
I I I I I I H I I I I I I I I I I
Define Transform8
I I I I I I I H I I I I I I I I I
Define Transform9
H I I I I I I I H I I I I I I I I
Define Transform10
I I I I I I I I I H I I I I I I I
Define Transform11
I I I I I I I I I I H I I I I I I
Define Transform12
I I I I I I I I I I I H I I I I I
Define Transform13
I I I I I I I I I I I I H I I I I
Define Transform14
I I I I I I I I I I I I I H I I I
Define Transform15
I I I I I I I I I I I I I I H I I
Define Transform16
I I I I I I I I I I I I I I I H I
Define Transform17
I I I I I I I I I I I I I I I I H
Define Transform18
I I I I I I I I I I I I I I I I H
Define Transform19
I I I I I I I I I I I I I I I H I
Define Transform20
I I I I I I I I I I I I I I H I I
Define Transform21
I I I I I I I I I I I I I H I I I
Define Transform22
I I I I I I I I I I I I H I I I I
Define Transform23
I I I I I I I I I I I H I I I I I
Define Transform24
I I I I I I I I I I H I I I I I I
Define Transform25
I I I I I I I I I H I I I I I I I
Define Transform26
I I I I I I I I H I I I I I I I I
Define Transform27
I I I I I I I H I I I I I I I I I
Define Transform28
I I I I I I H I I I I I I I I I I
Define Transform29
I I I I I H I I I I I I I I I I I
Define Transform30
I I I I H I I I I I I I I I I I I
Define Transform31
I I I H I I I I I I I I I I I I I
Define Transform32
I I H I I I I I I I I I I I I I I
Define Transform33
I H I I I I I I I I I I I I I I I
Define Transform34
H I I I I I I I I I I I I I I I I

16Sep_Fischer_James_Supplemental/circuits/._hadamard2

16Sep_Fischer_James_Supplemental/circuits/hadamard2

Define N 2
Define Phi0
0 1
Define Transform1
H I
Define Transform2
I H
Define Transform3
I H
Define Transform4
H I

16Sep_Fischer_James_Supplemental/circuits/._hadamard20

16Sep_Fischer_James_Supplemental/circuits/hadamard20

Define N 20
Define Phi0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
Define Transform1
H I I I I I I I I I I I I I I I I I I I
Define Transform2
I H I I I I I I I I I I I I I I I I I I
Define Transform3
I I H I I I I I I I I I I I I I I I I I
Define Transform4
I I I H I I I I I I I I I I I I I I I I
Define Transform5
I I I I H I I I I I I I I I I I I I I I
Define Transform6
I I I I I H I I I I I I I I I I I I I I
Define Transform7
I I I I I I H I I I I I I I I I I I I I
Define Transform8
I I I I I I I H I I I I I I I I I I I I
Define Transform9
H I I I I I I I H I I I I I I I I I I I
Define Transform10
I I I I I I I I I H I I I I I I I I I I
Define Transform11
I I I I I I I I I I H I I I I I I I I I
Define Transform12
I I I I I I I I I I I H I I I I I I I I
Define Transform13
I I I I I I I I I I I I H I I I I I I I
Define Transform14
I I I I I I I I I I I I I H I I I I I I
Define Transform15
I I I I I I I I I I I I I I H I I I I I
Define Transform16
I I I I I I I I I I I I I I I H I I I I
Define Transform17
I I I I I I I I I I I I I I I I H I I I
Define Transform18
I I I I I I I I I I I I I I I I I H I I
Define Transform19
I I I I I I I I I I I I I I I I I I H I
Define Transform20
I I I I I I I I I I I I I I I I I I I H
Define Transform21
I I I I I I I I I I I I I I I I I I I H
Define Transform22
I I I I I I I I I I I I I I I I I I H I
Define Transform23
I I I I I I I I I I I I I I I I I H I I
Define Transform24
I I I I I I I I I I I I I I I I H I I I
Define Transform25
I I I I I I I I I I I I I I I H I I I I
Define Transform26
I I I I I I I I I I I I I I H I I I I I
Define Transform27
I I I I I I I I I I I I I H I I I I I I
Define Transform28
I I I I I I I I I I I I H I I I I I I I
Define Transform29
I I I I I I I I I I I H I I I I I I I I
Define Transform30
I I I I I I I I I I H I I I I I I I I I
Define Transform31
I I I I I I I I I H I I I I I I I I I I
Define Transform32
I I I I I I I I H I I I I I I I I I I I
Define Transform33
I I I I I I I H I I I I I I I I I I I I
Define Transform34
I I I I I I H I I I I I I I I I I I I I
Define Transform35
I I I I I H I I I I I I I I I I I I I I
Define Transform36
I I I I H I I I I I I I I I I I I I I I
Define Transform37
I I I H I I I I I I I I I I I I I I I I
Define Transform38
I I H I I I I I I I I I I I I I I I I I
Define Transform39
I H I I I I I I I I I I I I I I I I I I
Define Transform40
H I I I I I I I I I I I I I I I I I I I

16Sep_Fischer_James_Supplemental/circuits/._hadamard25

16Sep_Fischer_James_Supplemental/circuits/hadamard25

Define N 25
Define Phi0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Define Transform1
H I
Define Transform2
I H I
Define Transform3
I I H I
Define Transform4
I I I H I
Define Transform5
I I I I H I
Define Transform6
I I I I I H I I I I I I I I I I I I I I I I I I I
Define Transform7
I I I I I I H I I I I I I I I I I I I I I I I I I
Define Transform8
I I I I I I I H I I I I I I I I I I I I I I I I I
Define Transform9
H I I I I I I I H I I I I I I I I I I I I I I I I
Define Transform10
I I I I I I I I I H I I I I I I I I I I I I I I I
Define Transform11
I I I I I I I I I I H I I I I I I I I I I I I I I
Define Transform12
I I I I I I I I I I I H I I I I I I I I I I I I I
Define Transform13
I I I I I I I I I I I I H I I I I I I I I I I I I
Define Transform14
I I I I I I I I I I I I I H I I I I I I I I I I I
Define Transform15
I I I I I I I I I I I I I I H I I I I I I I I I I
Define Transform16
I I I I I I I I I I I I I I I H I I I I I I I I I
Define Transform17
I I I I I I I I I I I I I I I I H I I I I I I I I
Define Transform18
I I I I I I I I I I I I I I I I I H I I I I I I I
Define Transform19
I I I I I I I I I I I I I I I I I I H I I I I I I
Define Transform20
I I I I I I I I I I I I I I I I I I I H I I I I I
Define Transform21
I H I I I I
Define Transform22
I H I I I
Define Transform23
I H I I
Define Transform24
I H I
Define Transform25
I H
Define Transform26
I H
Define Transform27
I H I
Define Transform28
I H I I
Define Transform29
I H I I I
Define Transform30
I H I I I I
Define Transform31
I I I I I I I I I I I I I I I I I I I H I I I I I
Define Transform32
I I I I I I I I I I I I I I I I I I H I I I I I I
Define Transform33
I I I I I I I I I I I I I I I I I H I I I I I I I
Define Transform34
I I I I I I I I I I I I I I I I H I I I I I I I I
Define Transform35
I I I I I I I I I I I I I I I H I I I I I I I I I
Define Transform36
I I I I I I I I I I I I I I H I I I I I I I I I I
Define Transform37
I I I I I I I I I I I I I H I I I I I I I I I I I
Define Transform38
I I I I I I I I I I I I H I I I I I I I I I I I I
Define Transform39
I I I I I I I I I I I H I I I I I I I I I I I I I
Define Transform40
I I I I I I I I I I H I I I I I I I I I I I I I I
Define Transform41
I I I I I I I I I H I I I I I I I I I I I I I I I
Define Transform42
I I I I I I I I H I I I I I I I I I I I I I I I I
Define Transform43
I I I I I I I H I I I I I I I I I I I I I I I I I
Define Transform44
I I I I I I H I I I I I I I I I I I I I I I I I I
Define Transform45
I I I I I H I I I I I I I I I I I I I I I I I I I
Define Transform46
I I I I H I
Define Transform47
I I I H I
Define Transform48
I I H I
Define Transform49
I H I
Define Transform50
H I

16Sep_Fischer_James_Supplemental/circuits/._hadamard32

16Sep_Fischer_James_Supplemental/circuits/hadamard32

Define N 32
Define Phi0
0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Define Transform1
H I
Define Transform2
I H I
Define Transform3
I I H I
Define Transform4
I I I H I
Define Transform5
I I I I H I
Define Transform6
I I I I I H I
Define Transform7
I I I I I I H I
Define Transform8
I I I I I I I H I
Define Transform9
H I I I I I I I H I
Define Transform10
I I I I I I I I I H I
Define Transform11
I I I I I I I I I I H I
Define Transform12
I I I I I I I I I I I H I
Define Transform13
I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I I
Define Transform14
I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I
Define Transform15
I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I
Define Transform16
I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I
Define Transform17
I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I
Define Transform18
I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I
Define Transform19
I I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I
Define Transform20
I I I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I
Define Transform21
I H I I I I I I I I I I I
Define Transform22
I H I I I I I I I I I I
Define Transform23
I H I I I I I I I I I
Define Transform24
I H I I I I I I I I
Define Transform25
I H I I I I I I I
Define Transform26
I H I I I I I I
Define Transform27
I H I I I I I
Define Transform28
I H I I I I
Define Transform29
I H I I I
Define Transform30
I H I I
Define Transform31
I H I
Define Transform32
I H
Define Transform33
I H
Define Transform34
I H I
Define Transform35
I H I I
Define Transform36
I H I I I
Define Transform37
I H I I I I
Define Transform38
I H I I I I I
Define Transform39
I H I I I I I I
Define Transform40
I H I I I I I I I
Define Transform41
I H I I I I I I I I
Define Transform42
I H I I I I I I I I I
Define Transform43
I H I I I I I I I I I I
Define Transform44
I H I I I I I I I I I I I
Define Transform45
I I I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I
Define Transform46
I I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I
Define Transform47
I I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I
Define Transform48
I I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I
Define Transform49
I I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I
Define Transform50
I I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I
Define Transform51
I I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I
Define Transform52
I I I I I I I I I I I I H I I I I I I I I I I I I I I I I I I I
Define Transform53
I I I I I I I I I I I H I
Define Transform54
I I I I I I I I I I H I
Define Transform55
I I I I I I I I I H I
Define Transform56
I I I I I I I I H I
Define Transform57
I I I I I I I H I
Define Transform58
I I I I I I H I
Define Transform59
I I I I I H I
Define Transform60
I I I I H I
Define Transform61
I I I H I
Define Transform62
I I H I
Define Transform63
I H I
Define Transform64
H I

16Sep_Fischer_James_Supplemental/circuits/._hadamard4

16Sep_Fischer_James_Supplemental/circuits/hadamard4

Define N 4
Define Phi0
0 1 0 1
Define Transform1
H I I I
Define Transform2
I H I I
Define Transform3
I I H I
Define Transform4
I I I H
Define Transform5
I I I H
Define Transform6
I I H I
Define Transform7
I H I I
Define Transform8
H I I I

16Sep_Fischer_James_Supplemental/circuits/._hadamard6

16Sep_Fischer_James_Supplemental/circuits/hadamard6

Define N 6
Define Phi0
0 1 0 1 0 1
Define Transform1
I I H I I I

16Sep_Fischer_James_Supplemental/circuits/._hadamard8

16Sep_Fischer_James_Supplemental/circuits/hadamard8

Define N 8
Define Phi0
0 1 0 1 0 1 0 1
Define Transform1
H I I I I I I I
Define Transform2
I H I I I I I I
Define Transform3
I I H I I I I I
Define Transform4
I I I H I I I I
Define Transform5
I I I I H I I I
Define Transform6
I I I I I H I I
Define Transform7
I I I I I I H I
Define Transform8
I I I I I I I H
Define Transform9
I I I I I I I H
Define Transform10
I I I I I I H I
Define Transform11
I I I I I H I I
Define Transform12
I I I I H I I I
Define Transform13
I I I H I I I I
Define Transform14
I I H I I I I I
Define Transform15
I H I I I I I I
Define Transform16
H I I I I I I I

16Sep_Fischer_James_Supplemental/circuits/hadamard_0.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 1.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/hadamard_1.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.707106781186548+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.0+0.0i
|6> 0.707106781186548+0.0i
|7> 0.0+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/._iqft

16Sep_Fischer_James_Supplemental/circuits/iqft

Define N 3
Define Phi0
0 0 0
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft0

16Sep_Fischer_James_Supplemental/circuits/iqft0

Define N 3
Define Phi0
0 0 0
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft1

16Sep_Fischer_James_Supplemental/circuits/iqft1

Define N 3
Define Phi0
0 0 1
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft2

16Sep_Fischer_James_Supplemental/circuits/iqft2

Define N 3
Define Phi0
0 1 0
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft3

16Sep_Fischer_James_Supplemental/circuits/iqft3

Define N 3
Define Phi0
0 1 1
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft4

16Sep_Fischer_James_Supplemental/circuits/iqft4

Define N 3
Define Phi0
1 0 0
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft5

16Sep_Fischer_James_Supplemental/circuits/iqft5

Define N 3
Define Phi0
1 0 1
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft6

16Sep_Fischer_James_Supplemental/circuits/iqft6

Define N 3
Define Phi0
1 1 0
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/._iqft7

16Sep_Fischer_James_Supplemental/circuits/iqft7

Define N 3
Define Phi0
1 1 1
Define Transform1
S1 I S2
Define Transform2
I I H
Define Transform3
I UCSP1 UCSP2
Define Transform4
I H I
Define Transform5
UCTP1 I UCTP2
Define Transform6
UCSP1 UCSP2 I
Define Transform7
H I I

16Sep_Fischer_James_Supplemental/circuits/measure

Define N 2 # This is a 2-qubit system
Define Phi0
0 0 # The initial value of the top and bottom qubits are 0 and 1, respectively
Define Transform1
H H # Apply Hadamard gates to both qubits
Define Transform2
M M

16Sep_Fischer_James_Supplemental/circuits/._measure1

16Sep_Fischer_James_Supplemental/circuits/measure1

Define N 2
Define Phi0
1 1
Define Transform1
S T
Define Transform2
M M

16Sep_Fischer_James_Supplemental/circuits/._measure2

16Sep_Fischer_James_Supplemental/circuits/measure2

Define N 2 # This is a 2-qubit system
Define Phi0
0 0 # The initial value of the top and bottom qubits are 0 and 1, respectively
Define Transform1
H H # Apply Hadamard gates to both qubits
Define Transform2
M I

16Sep_Fischer_James_Supplemental/circuits/._measure3

16Sep_Fischer_James_Supplemental/circuits/measure3

Define N 3
Define Phi0
0 0 0
Define Transform1
H H H
Define Transform2
M I I

16Sep_Fischer_James_Supplemental/circuits/._measure4

16Sep_Fischer_James_Supplemental/circuits/measure4

Define N 3
Define Phi0
0 0 0
Define Transform1
H H H
Define Transform2
M M M

16Sep_Fischer_James_Supplemental/circuits/._phase

16Sep_Fischer_James_Supplemental/circuits/phase

Define N 1
Define Phi0
1
Define Transform1
S

16Sep_Fischer_James_Supplemental/circuits/._phaseflip

16Sep_Fischer_James_Supplemental/circuits/phaseflip

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I I I I I I I
Define Transform4
I I I H I I I I I
Define Transform5
I I I I I I H I I
Define Transform6
Control Target I I I I I I I
Define Transform7
I I I Control Target I I I I
Define Transform8
I I I I I I Control Target I
Define Transform9
Control I Target I I I I I I
Define Transform10
I I I Control I Target I I I
Define Transform11
I I I I I I Control I Target
Define Transform12
Z I I I I I I I I
Define Transform13
Control I Target I I I I I I
Define Transform14
I I I Control I Target I I I
Define Transform15
I I I I I I Control I Target
Define Transform16
Control Target I I I I I I I
Define Transform17
I I I Control Target I I I I
Define Transform18
I I I I I I Control Target I
Define Transform19
UT1 UT2 UT3 I I I I I I
Define Transform20
I I I UT1 UT2 UT3 I I I
Define Transform21
I I I I I I UT1 UT2 UT3
Define Transform22
H I I I I I I I I
Define Transform23
I I I H I I I I I
Define Transform24
I I I I I I H I I
Define Transform25
Control I I I I I Target I I
Define Transform26
Control I I Target I I I I I
Define Transform27
UT1 I I UT2 I I UT3 I I

16Sep_Fischer_James_Supplemental/circuits/._psu

16Sep_Fischer_James_Supplemental/circuits/psu

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I H I I H I I
Define Transform4
Control Target I Control Target I Control Target I
Define Transform5
Control I Target Control I Target Control I Target
Define Transform6
Control I Target Control I Target Control I Target
Define Transform7
Control Target I Control Target I Control Target I
Define Transform8
UT1 UT2 UT3 UT1 UT2 UT3 UT1 UT2 UT3
Define Transform9
H I I H I I H I I
Define Transform10
Control I I I I I Target I I
Define Transform11
Control I I Target I I I I I
Define Transform12
UT1 I I UT2 I I UT3 I I

16Sep_Fischer_James_Supplemental/circuits/._psu2

16Sep_Fischer_James_Supplemental/circuits/psu2

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I H I I H I I
Define Transform4
Control Target I Control Target I Control Target I
Define Transform5
Control I Target Control I Target Control I Target
Define Transform6
I I I X I I I I I
Define Transform7
Control I Target Control I Target Control I Target
Define Transform8
Control Target I Control Target I Control Target I
Define Transform9
UT1 UT2 UT3 UT1 UT2 UT3 UT1 UT2 UT3
Define Transform10
H I I H I I H I I
Define Transform11
Control I I I I I Target I I
Define Transform12
Control I I Target I I I I I
Define Transform13
UT1 I I UT2 I I UT3 I I

16Sep_Fischer_James_Supplemental/circuits/._psu3

16Sep_Fischer_James_Supplemental/circuits/psu3

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I H I I H I I
Define Transform4
Control Target I Control Target I Control Target I
Define Transform5
Control I Target Control I Target Control I Target
Define Transform6
I I I Z I I I I I
Define Transform7
Control I Target Control I Target Control I Target
Define Transform8
Control Target I Control Target I Control Target I
Define Transform9
UT1 UT2 UT3 UT1 UT2 UT3 UT1 UT2 UT3
Define Transform10
H I I H I I H I I
Define Transform11
Control I I I I I Target I I
Define Transform12
Control I I Target I I I I I
Define Transform13
UT1 I I UT2 I I UT3 I I

16Sep_Fischer_James_Supplemental/circuits/._psu4

16Sep_Fischer_James_Supplemental/circuits/psu4

Define N 3
Define Phi0
1 0 0
Define Transform1
Control Target I
Define Transform2
Control I Target
Define Transform3
I X I
Define Transform4
Control I Target
Define Transform5
Control Target I
Define Transform6
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._psu5

16Sep_Fischer_James_Supplemental/circuits/psu5

Define N 3
Define Phi0
1 0 0
Define Transform1
Control Target I
Define Transform2
Control I Target
Define Transform3
X I I
Define Transform4
Control I Target
Define Transform5
Control Target I
Define Transform6
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._psu6

16Sep_Fischer_James_Supplemental/circuits/psu6

Define N 3
Define Phi0
1 0 0
Define Transform1
Control Target I
Define Transform2
Control I Target
Define Transform3
H H H
Define Transform4
Z I I
Define Transform5
H H H
Define Transform6
Control I Target
Define Transform7
Control Target I
Define Transform8
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._psu7

16Sep_Fischer_James_Supplemental/circuits/psu7

Define N 3
Define Phi0
1 0 0
Define Transform1
Control Target I
Define Transform2
Control I Target
Define Transform3
H H H
Define Transform4
I Z I
Define Transform5
H H H
Define Transform6
Control I Target
Define Transform7
Control Target I
Define Transform8
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._psu8

16Sep_Fischer_James_Supplemental/circuits/psu8

Define N 3
Define Phi0
1 0 0
Define Transform1
Control Target I
Define Transform2
Control I Target
Define Transform3
H H H
Define Transform4
I I Z
Define Transform5
H H H
Define Transform6
Control I Target
Define Transform7
Control Target I
Define Transform8
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._psu9

16Sep_Fischer_James_Supplemental/circuits/psu9

Define N 3
Define Phi0
0 0 0
Define Transform1
Control Target I
Define Transform2
Control I Target
Define Transform3
H H H
Define Transform4
Z I I
Define Transform5
H H H
Define Transform6
Control I Target
Define Transform7
Control Target I
Define Transform8
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._qft

16Sep_Fischer_James_Supplemental/circuits/qft

Define N 3
Define Phi0
0 0 0
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft0

16Sep_Fischer_James_Supplemental/circuits/qft0

Define N 3
Define Phi0
0 0 0
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft1

16Sep_Fischer_James_Supplemental/circuits/qft1

Define N 3
Define Phi0
0 0 1
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft2

16Sep_Fischer_James_Supplemental/circuits/qft2

Define N 3
Define Phi0
0 1 0
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft3

16Sep_Fischer_James_Supplemental/circuits/qft3

Define N 3
Define Phi0
0 1 1
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft4

16Sep_Fischer_James_Supplemental/circuits/qft4

Define N 3
Define Phi0
1 0 0
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft5

16Sep_Fischer_James_Supplemental/circuits/qft5

Define N 3
Define Phi0
1 0 1
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft6

16Sep_Fischer_James_Supplemental/circuits/qft6

Define N 3
Define Phi0
1 1 0
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._qft7

16Sep_Fischer_James_Supplemental/circuits/qft7

Define N 3
Define Phi0
1 1 1
Define Transform1
H I I
Define Transform2
UCS1 UCS2 I
Define Transform3
UCT1 I UCT2
Define Transform4
I H I
Define Transform5
I UCS1 UCS2
Define Transform6
I I H
Define Transform7
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/._shor.alt

16Sep_Fischer_James_Supplemental/circuits/shor.alt

Define N 7
Define U 128
0 1 0
1 0
0 0 0 1 0
0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0
0 1 0 0 0
0 1
0 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Define Phi0
0 0 0 0 0 0 0
Define Transform1
H I I I I I I
Define Transform2
UCS1 UCS2 I I I I I
Define Transform3
UCT1 I UCT2 I I I I
Define Transform4
I H I I I I I
Define Transform5
I UCS1 UCS2 I I I I
Define Transform6
I I H I I I I
Define Transform7
S1 I S2 I I I I
Define Transform8
U
Define Transform9
S1 I S2 I I I I
Define Transform10
I I H I I I I
Define Transform11
I UCSP1 UCSP2 I I I I
Define Transform12
I H I I I I I
Define Transform13
UCTP1 I UCTP2 I I I I
Define Transform14
UCSP1 UCSP2 I I I I I
Define Transform15
H I I I I I I
Define Transform16
M M M I I I I

16Sep_Fischer_James_Supplemental/circuits/._shor.photonic

16Sep_Fischer_James_Supplemental/circuits/shor.photonic

Define N 5
Define Phi0
0 0 0 0 1
Define Transform1
H H H I X
Define Transform2
I I Control I Target
Define Transform3
I Control I Target I
Define Transform4
S1 I S2 I I
Define Transform5
I I H I I
Define Transform6
I UCSP1 UCSP2 I I
Define Transform7
I H I I I
Define Transform8
UCTP1 I UCTP2 I I
Define Transform9
UCSP1 UCSP2 I I I
Define Transform10
H I I I I
Define Transform11
M M M I I

16Sep_Fischer_James_Supplemental/circuits/._shor_no

16Sep_Fischer_James_Supplemental/circuits/shor_no

Define N 7
Define U 128
0 1 0
1 0
0 0 0 1 0
0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0
0 1 0 0 0
0 1
0 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Define Phi0
0 0 0 0 0 0 0
Define Transform1
H H H I I I I
Define Transform2
U
Define Transform3
S1 I S2 I I I I
Define Transform4
I I H I I I I
Define Transform5
I UCSP1 UCSP2 I I I I
Define Transform6
I H I I I I I
Define Transform7
UCTP1 I UCTP2 I I I I
Define Transform8
UCSP1 UCSP2 I I I I I
Define Transform9
H I I I I I I
Define Transform10
M M M I I I I

16Sep_Fischer_James_Supplemental/circuits/shor_yes

Define N 7
Define U 128
0 1 0
1 0
0 0 0 1 0
0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0
0 1 0 0 0
0 1
0 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Define Phi0
0 0 0 0 0 0 0
Define Transform1
H H H I I I I
Define Transform2
U
Define Transform3
I I I M M M M
Define Transform4
S1 I S2 I I I I
Define Transform5
I I H I I I I
Define Transform6
I UCSP1 UCSP2 I I I I
Define Transform7
I H I I I I I
Define Transform8
UCTP1 I UCTP2 I I I I
Define Transform9
UCSP1 UCSP2 I I I I I
Define Transform10
H I I I I I I
Define Transform11
M M M I I I I

16Sep_Fischer_James_Supplemental/circuits/._shorcode

16Sep_Fischer_James_Supplemental/circuits/shorcode

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I I I I I I I
Define Transform4
I I I H I I I I I
Define Transform5
I I I I I I H I I
Define Transform6
Control Target I I I I I I I
Define Transform7
I I I Control Target I I I I
Define Transform8
I I I I I I Control Target I
Define Transform9
Control I Target I I I I I I
Define Transform10
I I I Control I Target I I I
Define Transform11
I I I I I I Control I Target

16Sep_Fischer_James_Supplemental/circuits/shorencodedecode

Define N 9
Define Phi0
1 0 0 0 0 0 0 0 0
Define Transform1
Control I I Target I I I I I
Define Transform2
Control I I I I I Target I I
Define Transform3
H I I H I I H I I
Define Transform4
Control Target I Control Target I Control Target I
Define Transform5
Control I Target Control I Target Control I Target
Define Transform6
Control I Target Control I Target Control I Target
Define Transform7
Control Target I Control Target I Control Target I
Define Transform8
H I I H I I H I I
Define Transform9
Control I I I I I Target I I
Define Transform10
Control I I Target I I I I I

16Sep_Fischer_James_Supplemental/circuits/._simon

16Sep_Fischer_James_Supplemental/circuits/simon

Define N 6 # This is a 6-qubit system
Define U 64 # Define the 64x64 matrix U
0 0 0 0 1 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0
1 0
0 1 0
0 0 1 0
0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0
0 1 0 0 0
0 1
0 1 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0 0
Define Phi0
0 0 0 0 0 0
Define Transform1
H H H I I I
Define Transform2
U
Define Transform3
H H H I I I
Define Transform4
M M M I I I

16Sep_Fischer_James_Supplemental/circuits/simon_0.out

|0> 1.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i
|8> 0.0+0.0i
|9> 0.0+0.0i
|10> 0.0+0.0i
|11> 0.0+0.0i
|12> 0.0+0.0i
|13> 0.0+0.0i
|14> 0.0+0.0i
|15> 0.0+0.0i
|16> 0.0+0.0i
|17> 0.0+0.0i
|18> 0.0+0.0i
|19> 0.0+0.0i
|20> 0.0+0.0i
|21> 0.0+0.0i
|22> 0.0+0.0i
|23> 0.0+0.0i
|24> 0.0+0.0i
|25> 0.0+0.0i
|26> 0.0+0.0i
|27> 0.0+0.0i
|28> 0.0+0.0i
|29> 0.0+0.0i
|30> 0.0+0.0i
|31> 0.0+0.0i
|32> 0.0+0.0i
|33> 0.0+0.0i
|34> 0.0+0.0i
|35> 0.0+0.0i
|36> 0.0+0.0i
|37> 0.0+0.0i
|38> 0.0+0.0i
|39> 0.0+0.0i
|40> 0.0+0.0i
|41> 0.0+0.0i
|42> 0.0+0.0i
|43> 0.0+0.0i
|44> 0.0+0.0i
|45> 0.0+0.0i
|46> 0.0+0.0i
|47> 0.0+0.0i
|48> 0.0+0.0i
|49> 0.0+0.0i
|50> 0.0+0.0i
|51> 0.0+0.0i
|52> 0.0+0.0i
|53> 0.0+0.0i
|54> 0.0+0.0i
|55> 0.0+0.0i
|56> 0.0+0.0i
|57> 0.0+0.0i
|58> 0.0+0.0i
|59> 0.0+0.0i
|60> 0.0+0.0i
|61> 0.0+0.0i
|62> 0.0+0.0i
|63> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._swap

16Sep_Fischer_James_Supplemental/circuits/swap

Define N 2
Define Phi0
1 0
Define Transform1
S1 S2

16Sep_Fischer_James_Supplemental/circuits/._swap2

16Sep_Fischer_James_Supplemental/circuits/swap2

Define N 2
Define Phi0
0 1
Define Transform1
S1 S2

16Sep_Fischer_James_Supplemental/circuits/._swap3

16Sep_Fischer_James_Supplemental/circuits/swap3

Define N 3
Define Phi0
1 0 0
Define Transform1
S1 I S2

16Sep_Fischer_James_Supplemental/circuits/teleport

Define N 3
Define Phi0
1 0 0
Define Transform1
I H I
Define Transform2
I CNOT
Define Transform3
CNOT I
Define Transform4
H I I
Define Transform5
M M I

16Sep_Fischer_James_Supplemental/circuits/._teleport1

16Sep_Fischer_James_Supplemental/circuits/teleport1

Define N 3
Define Phi0
1 0 0
Define Transform1
I H I
Define Transform2
I Control Target
Define Transform3
Control Target I
Define Transform4
H I I
Define Transform5
M I I
Define Transform6
I M I

16Sep_Fischer_James_Supplemental/circuits/teleport1_0.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.707106781186548+0.0i
|5> 0.0+0.0i
|6> 0.707106781186548+0.0i
|7> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleport1_1.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.707106781186548+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.707106781186548+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleport1_2.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.707106781186548+0.0i
|6> 0.707106781186548+0.0i
|7> 0.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleport1_3.out

|0> 0.0+0.0i
|1> 0.5000000000000007+0.0i
|2> 0.5000000000000007+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> -0.5000000000000007+0.0i
|6> -0.5000000000000007+0.0i
|7> 0.0+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleport1_4.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> -0.7071067811865475+0.0i
|6> -0.7071067811865475+0.0i
|7> 0.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleport1_5.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> -1.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._teleportation

16Sep_Fischer_James_Supplemental/circuits/teleportation

Define N 3
Define Phi0
1 0 0
Define Transform1
I H I
Define Transform2
I Control Target
Define Transform3
Control Target I
Define Transform4
H I I
Define Transform5
M I I
Define Transform6
I M I

16Sep_Fischer_James_Supplemental/circuits/teleportation_0.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 1.0+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleportation_1.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.707106781186548+0.0i
|5> 0.0+0.0i
|6> 0.707106781186548+0.0i
|7> 0.0+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.707106781186548+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleportation_2.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.707106781186548+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.707106781186548+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleportation_3.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.707106781186548+0.0i
|6> 0.707106781186548+0.0i
|7> 0.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleportation_4.out

|0> 0.0+0.0i
|1> 0.5000000000000007+0.0i
|2> 0.5000000000000007+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> -0.5000000000000007+0.0i
|6> -0.5000000000000007+0.0i
|7> 0.0+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.0+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/teleportation_5.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> -1.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._test

16Sep_Fischer_James_Supplemental/circuits/test

Define N 3
Define Phi0
1 0 0
Define Transform1
Control I Target

16Sep_Fischer_James_Supplemental/circuits/._test0

16Sep_Fischer_James_Supplemental/circuits/test0

Define N 5
Define Phi0
1 1 0 1 1
Define Transform1
H I I
Define Transform2
I H I
Define Transform3
I I H
Define Transform4
M I I
Define Transform5
I M I
Define Transform6
I I M

16Sep_Fischer_James_Supplemental/circuits/test0_0.out

|0> 0.707106781186548+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> -0.707106781186548+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/test0_1.out

|0> 0.5000000000000007+0.0i
|1> 0.0+0.0i
|2> 0.5000000000000007+0.0i
|3> 0.0+0.0i
|4> -0.5000000000000007+0.0i
|5> 0.0+0.0i
|6> -0.5000000000000007+0.0i
|7> 0.0+0.0i
=================
0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.707106781186548+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.707106781186548+0.0i
0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i 0.707106781186548+0.0i 0.0+0.0i -0.707106781186548+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i -0.0+0.0i -0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i -0.0+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/test0_2.out

|0> 0.35355339059327445+0.0i
|1> 0.35355339059327445+0.0i
|2> 0.35355339059327445+0.0i
|3> 0.35355339059327445+0.0i
|4> -0.35355339059327445+0.0i
|5> -0.35355339059327445+0.0i
|6> -0.35355339059327445+0.0i
|7> -0.35355339059327445+0.0i
=================
0.707106781186548+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.707106781186548+0.0i -0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i 0.0+0.0i -0.0+0.0i 0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i -0.0+0.0i 0.707106781186548+0.0i -0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i 0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.707106781186548+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i -0.0+0.0i 0.0+0.0i -0.0+0.0i 0.707106781186548+0.0i -0.707106781186548+0.0i 0.0+0.0i -0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.707106781186548+0.0i 0.707106781186548+0.0i
0.0+0.0i -0.0+0.0i 0.0+0.0i -0.0+0.0i 0.0+0.0i -0.0+0.0i 0.707106781186548+0.0i -0.707106781186548+0.0i

16Sep_Fischer_James_Supplemental/circuits/test0_3.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> -1.0+0.0i
|5> 0.0+0.0i
|6> 0.0+0.0i
|7> 0.0+0.0i
=================
1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i 0.0+0.0i
0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i 1.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._test1

16Sep_Fischer_James_Supplemental/circuits/test1

Define N 3
Define Phi0
1 1 1
Define Transform1
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._test2

16Sep_Fischer_James_Supplemental/circuits/test2

Define N 3
Define Phi0
1 0 1
Define Transform1
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._test3

16Sep_Fischer_James_Supplemental/circuits/test3

Define N 3
Define Phi0
1 0 0
Define Transform1
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._test4

16Sep_Fischer_James_Supplemental/circuits/test4

Define N 3
Define Phi0
1 0 0
Define Transform1
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._test5

16Sep_Fischer_James_Supplemental/circuits/test5

Define N 5
Define Phi0
0 0 1 0 1
Define Transform1
UT1 H UT2 I UT3

16Sep_Fischer_James_Supplemental/circuits/._test6

16Sep_Fischer_James_Supplemental/circuits/test6

Define N 5
Define Phi0
0 0 0 0 0
Define Transform1
X I I I I

16Sep_Fischer_James_Supplemental/circuits/._test7

16Sep_Fischer_James_Supplemental/circuits/test7

Define N 5
Define Phi0
1 0 0 0 0
Define Transform1
Z I I I I

16Sep_Fischer_James_Supplemental/circuits/._test8

16Sep_Fischer_James_Supplemental/circuits/test8

Define N 3
Define Phi0
1 1 1
Define Transform1
H I I
Define Transform2
H I I
Define Transform3
CS1 CS2 I
Define Transform4
CS1 CS2 I
Define Transform5
CT1 CT2 I
Define Transform6
CT1 CT2 I
Define Transform7
S1 S2 I
Define Transform8
S1 S2 I

16Sep_Fischer_James_Supplemental/circuits/._testCNOT

16Sep_Fischer_James_Supplemental/circuits/testCNOT

Define N 3
Define Phi0
1 0 0
Define Transform1
Control I Target

16Sep_Fischer_James_Supplemental/circuits/._testH

16Sep_Fischer_James_Supplemental/circuits/testH

Define N 3
Define Phi0
1 1 1
Define Transform1
H I I
Define Transform2
I H I
Define Transform3
I I H

16Sep_Fischer_James_Supplemental/circuits/._testM

16Sep_Fischer_James_Supplemental/circuits/testM

Define N 3
Define Phi0
1 1 1
Define Transform1
H I I
Define Transform2
I H I
Define Transform3
I I H
Define Transform4
I I M
Define Transform6
I M I
Define Transform6
M I I

16Sep_Fischer_James_Supplemental/circuits/._testS

16Sep_Fischer_James_Supplemental/circuits/testS

Define N 3
Define Phi0
1 1 1
Define Transform1
S I I
Define Transform2
I S I
Define Transform3
I I S

16Sep_Fischer_James_Supplemental/circuits/._testT

16Sep_Fischer_James_Supplemental/circuits/testT

Define N 3
Define Phi0
1 1 1
Define Transform1
T I I
Define Transform2
I T I
Define Transform3
I I T

16Sep_Fischer_James_Supplemental/circuits/._testToffoli

16Sep_Fischer_James_Supplemental/circuits/testToffoli

Define N 3
Define Phi0
1 1 1
Define Transform1
UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._testX

16Sep_Fischer_James_Supplemental/circuits/testX

Define N 3
Define Phi0
1 1 1
Define Transform1
X I I
Define Transform2
I X I
Define Transform3
I I X

16Sep_Fischer_James_Supplemental/circuits/._testY

16Sep_Fischer_James_Supplemental/circuits/testY

Define N 3
Define Phi0
1 1 1
Define Transform1
Y I I
Define Transform2
I Y I
Define Transform3
I I Y
Define Transform4
I I Y
Define Transform5
I Y I
Define Transform6
Y I I

16Sep_Fischer_James_Supplemental/circuits/._testZ

16Sep_Fischer_James_Supplemental/circuits/testZ

Define N 3
Define Phi0
1 1 1
Define Transform1
Z I I
Define Transform2
I Z I
Define Transform3
I I Z

16Sep_Fischer_James_Supplemental/circuits/._tgate

16Sep_Fischer_James_Supplemental/circuits/tgate

Define N 1
Define Phi0
1
Define Transform1
T

16Sep_Fischer_James_Supplemental/circuits/._toffoli

16Sep_Fischer_James_Supplemental/circuits/toffoli

Define N 3
Define Phi0
1 1 0
Define Transform1
T1 T2 T3

16Sep_Fischer_James_Supplemental/circuits/._toffoli2

16Sep_Fischer_James_Supplemental/circuits/toffoli2

Define N 4
Define Phi0
1 1 0 0
Define Transform1
T1 T2 I T3

16Sep_Fischer_James_Supplemental/circuits/toffoli_0.out

|0> 0.0+0.0i
|1> 0.0+0.0i
|2> 0.0+0.0i
|3> 0.0+0.0i
|4> 0.0+0.0i
|5> 0.0+0.0i
|6> 1.0+0.0i
|7> 0.0+0.0i

16Sep_Fischer_James_Supplemental/circuits/._utoffoli

16Sep_Fischer_James_Supplemental/circuits/utoffoli

Define N 5
Define Phi0
0 1 1 1 0
Define Transform1
I I UT1 UT2 UT3

16Sep_Fischer_James_Supplemental/circuits/._xtest

16Sep_Fischer_James_Supplemental/circuits/xtest

Define N 5
Define Phi0
1 1 1 1 0
Define Transform1
I I I X I

16Sep_Fischer_James_Supplemental/circuits/._ytest

16Sep_Fischer_James_Supplemental/circuits/ytest

Define N 1
Define Phi0
0
Define Transform1
H
Define Transform 2
H
Define Transform1
X
Define Transform 2
X
Define Transform1
Y
Define Transform 2
Y
Define Transform1
Z
Define Transform 2
Z

16Sep_Fischer_James_Supplemental/circuits/._ytest2

16Sep_Fischer_James_Supplemental/circuits/ytest2

Define N 1
Define Phi0
1
Define Transform1
H
Define Transform 2
H
Define Transform1
X
Define Transform 2
X
Define Transform1
Y
Define Transform 2
Y
Define Transform1
Z
Define Transform 2
Z

16Sep_Fischer_James_Supplemental/circuits/._ytest3

16Sep_Fischer_James_Supplemental/circuits/ytest3

Define N 2
Define Phi0
1 1
Define Transform1
H H
Define Transform 2
H H
Define Transform1
X X
Define Transform 2
X X
Define Transform1
Y Y
Define Transform 2
Y Y
Define Transform1
Z Z
Define Transform 2
Z Z

16Sep_Fischer_James_Supplemental/circuits/._ytest4

16Sep_Fischer_James_Supplemental/circuits/ytest4

Define N 2
Define Phi0
0 0
Define Transform1
H H
Define Transform 2
H H
Define Transform1
X X
Define Transform 2
X X
Define Transform1
Y Y
Define Transform 2
Y Y
Define Transform1
Z Z
Define Transform 2
Z Z

16Sep_Fischer_James_Supplemental/circuits/._ytest5

16Sep_Fischer_James_Supplemental/circuits/ytest5

Define N 2
Define Phi0
1 0
Define Transform1
H H
Define Transform 2
H H
Define Transform1
X X
Define Transform 2
X X
Define Transform1
Y Y
Define Transform 2
Y Y
Define Transform1
Z Z
Define Transform 2
Z Z

16Sep_Fischer_James_Supplemental/circuits/._ytest6

16Sep_Fischer_James_Supplemental/circuits/ytest6

Define N 2
Define Phi0
0 1
Define Transform1
H H
Define Transform 2
H H
Define Transform1
X X
Define Transform 2
X X
Define Transform1
Y Y
Define Transform 2
Y Y
Define Transform1
Z Z
Define Transform 2
Z Z

